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The effect of wall vibrations on the sound of brass wind instruments is reported. There is experimental evidence
showing that damping the vibrations of a trumpet bell alters the input impedance and transfer function of the
instrument. Numerical simulations suggest that it is the axi-symmetric oscillations of the walls of the instrument
that are responsible for the observed effects. Indeed, a finite element analysis of the effects of such oscillations
on the air column yields results qualitatively similar to those of experiments. However, due to the complexity of
the geometry and boundary conditions of a real instrument, the results of simulations do not agree quantitatively
with the measured influence of the wall vibrations on the radiated sound from an actual trumpet. For this reason,
straight trumpet bells have been manufactured that are expected to have boundary conditions more consistent with
the assumptions of the numerical model. The results of both experimentalmeasurements and numerical simulations
of these custom-made bells are presented in this study.

1 Introduction

Wave propagation inside a wind instrument has been
extensively studied and successfully modelled in the past
decades (see for example [1, 2, 3]). The walls of the in-
strument bore are usually considered as perfectly rigid in
such models. However, this is not the case under playing
conditions of brass wind instruments, with players claiming
that wall vibrations can affect the behaviour of an instrument
even though the amplitude is extremely small compared to
the dimensions of the bell. This leads to a debate concern-
ing whether such small oscillations can significantly influ-
ence the sound radiated from wind instruments. Several re-
searchers have recently dealt with this topic [4, 5, 6, 7] and
experiments have shown that the effect of wall vibrations
should not be neglected [8, 9].

Apart from the mechanical feedback to the player’s lips,
there is a coupling between the vibrating walls and the
air column inside the instrument, that can affect its input
impedance [5]. In fact, it has been shown that even in the
absence of mechanical feedback, when the vibrations in the
air column are excited by electronic means, differences in the
transfer function of the instrument persist [9].

An extensive structural analysis of trumpet bells has been
reported in [10], where a simplified mass-spring model was
presented that was able to predict the vibrational behaviour
of a trumpet taking only axi-symmetric oscillations into ac-
count. The results of this model were tested against a fi-
nite element study executed using the structural mechanics
module of the COMSOL software1. The performance of the
simplified model compared well to the finite element model,
rendering it useful for predicting the oscillations of the walls
of wind instruments. Furthermore, it has been shown how
altering the material properties and the wall thickness of an
instrument, as well as the positions of bends, braces and ad-
ditional masses due to valves or keys can alter the vibrational
behaviour of the system.

The long-term objective of this study is to incorporate
this model into an algorithm that can calculate the input
impedance and transfer function of wind instruments [11],
thus taking into account the wall vibrations, when necessary.
To achieve this it remains to establish (1) whether it is suffi-
cient to consider only axisymmetric oscillations and (2) what
is the coupling mechanism between the vibrating walls and
the air column inside the instrument.

Before the formulation of a simplified algorithm that cap-
tures the interaction between the walls and the air column it
is necessary to obtain a benchmark against which the model
will be tested. Therefore, besides performing measurements
on trumpet bells that are free to vibrate or damped using

1COMSOL Multiphysics R©

sandbags [9], a finite element model was also developed in
order to deepen our understanding in the underlying physical
phenomena. The implementation of this model was carried
out in COMSOL and preliminary results have shown much
smaller differences than those predicted by the measurements
when damping the wall vibrations [12].

Since it is not easy, due to the complex geometry of a
trumpet, to estimate why the model fails to predict the ex-
perimental data, a pair of straight trumpet bells have been
constructed. The thickness and borelist of these bells were
given directly by the manufacturer. It is expected that these
bells will be more consistent with the assumptions needed to
be taken during the formulation of a numerical model. In fact
many uncertainties concerning the locations of bends, braces
and additional masses can be eliminated. The experiments
and modelling attempts presented in this paper are carried
out on these straight trumpet bells.

2 Mechanical modes of vibration

In general, elliptic modes of a trumpet bell oscillate with
larger amplitudes than the axial modes. However, these high-
Q elliptic modes can only be excited at a certain frequency
and therefore can not explain wideband effects due to wall
vibrations (as the ones reported in [9]). On the other hand,
vibrations along the axis of the bell appear to have an effect
over a wider frequency range and, even though their ampli-
tude is significantly smaller, the effective modulation of the
cross-sectional area of the air column due to axial vibrations
is amplified at the rapidly-flaring region of brass instrument
bells.

A three-dimensional finite element simulation of a trum-
pet bell, that can capture both axial and elliptic modes can be
used to demonstrate the limited effect of the latter. The bell
was stimulated at the mouthpiece end by a sinusoidal force
normal to the mouthpiece plane, plus a small perturbation
vertical to the applied force in order to brake the symmetry
of the model and ensure that elliptic modes are excited. The
displacement at the rim of the bell is plotted in Figure 1 and
compared to that calculated by a two-dimensional axisym-
metric simulation; it can be observed that the assumption of
symmetry along the axis only fails to predict the bell dis-
placement at a limited number of frequencies, corresponding
to the elliptic modes of the bell. Furthermore, these modes
can be excited under playing conditions only if their reso-
nance frequency is close to the location of an impedance peak
of the instrument. In that case they can indeed affect the be-
haviour of the instrument, but such an interaction can still
not explain the wideband differences observed when damp-
ing the wall vibrations. Therefore the attempts to model the
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Figure 1: Maximum bell displacement over frequency
stimulated by a force applied at the mouthpiece, as
calculated using a 2d axisymmetric and a 3d model.

effects of the interaction between the vibrating walls and the
air column are confined to studying the axial modes of the
instrument oscillations.

Regardless of their significance in this study, elliptic
modes can still be used to validate the material properties of
the bells. Using a constant bell thickness and standard values
for brass density (8400kg/m3) Young’s modulus (110GPa)
and Poisson ratio (0.35), the location of certain elliptical
modes was estimated by the model quite close to the fre-
quencies obtained using electronic speckle pattern interfer-
ometry (see Figure 2) as discussed in [13]. Discrepancies are
still expected due to a non-perfectly circular cross-section of
the instrument bell, as well as variations in the thickness of
the walls, that is assumed constant in the model. In fact,
the thickness of the straight bells, which was given as a con-
stant by the manufacturer, has been measured using a Magna
Mika R©8500 thickness gauge; variations of up to 17% were
observed along the circumference of the bell and up to 12%
along its axis. Such variations are actually expected due to
the way trumpet bells are manufactured.

f=1371 Hz f=1336 Hz

f=1705 Hz f=1569 Hz

Figure 2: Elliptic modes of the vibration of the trumpet bell,
as calculated from a 3D simulation (left) and observed using

electronic speckle pattern interferometry (right).

Figure 3: Experimental setup to measure the vibrations of
the straight bell.

3 Experiments

The first experiments carried out on the straight trumpet
bells were of a structural nature. The bells were suspended
at two points (corresponding to the positions of the trumpet
braces) 20 and 40 cm away from the rim plane and stimulated
at the mouthpiece end by a shaker using a sinusoidal acceler-
ation (see Figure 3). Twelve accelerometers were positioned
along the circumference of the rim of the bell and their av-
erage is considered, in order to eliminate the effect of ellipti-
cal modes. The experiment was carried out twice, inside an
anechoic chamber and the results are depicted in Figure 4.
The plotted frequency response function is the ratio between
the average of the readings for the rim displacement over the
mouthpiece displacement. The dashed curve shows the same
curve as calculated using the simplified mass-spring model.
An extra mass was added at the mouthpiece in the model,
corresponding to the mass of the shaker, resulting in a differ-
ent resonance behaviour compared to that of Figure 1.
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Figure 4: Frequency response function (average rim
displacement relative to mouthpiece displacement)
measured on a straight bell and calculated using the

mass-spring model presented in [10].

To measure the effect of the vibrating walls on the be-
haviour of the instrument, the straight bells were fit with a
trumpet mouthpiece and the air column was stimulated us-
ing a horn driver. To record the input signal, the driver was
connected to the mouthpiece by an adapter that held a mi-
crophone between the speaker and the mouthpiece. Another
microphone was placed approximately 1 m away from the
bell on the center axis to record the output signal, so that the
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transfer function of the instrument could be calculated. A
baffle was placed at the plane of the bell to ensure that no
direct sound reached the output microphone from the driving
speaker, and the walls and the floor of the room were covered
with anechoic foam.

To ensure a precise measurement of the transfer func-
tion, a sinusoidal signal lasting 1 s was used to drive the
horn driver at each frequency of interest. The frequency of
the signal was varied from 100Hz - 2 kHz in increments of
1 Hz. The signal from the input and output microphoneswere
recorded and the mean amplitude at the driving frequency
was calculated in real time for both. The amplitude at the
driving frequency was then used to determine the transfer
function before changing the frequency of the driving signal.
The long sample time allowed for precise measurements as
well as ensuring that the bell vibrations had adequate time to
reach steady-state at each frequency.

The transfer function was measured for both the case of
a free bell and when the vibrations were heavily damped.
Damping of the vibrations of the instrument was accom-
plished by placing sandbags around the bell. Although it is
believed that complete damping of the oscillations of the wall
was not achieved, the vibrations were significantly reduced
and the damped case is henceforth compared to a model with
perfectly rigid walls. The resulting transfer function in both
cases, as well as the difference between the transfer functions
are depicted in Figure 5. Clearly, differences exist between
the two curves and they are qualitatively comparable to those
measured previously on a complete trumpet [9]. Before at-
tempting to explain the cause of those differences, numerical
simulations are used to investigate the wall vibration mecha-
nism.
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Figure 5: (top) Transfer function of a straight bell measured
1m away from the bell as a function of frequency, for the

case of a free vibrating bell (blue) and a heavily damped bell
(red dashed). (bottom) Difference in the transfer functions

caused by damping the bell.

4 Modelling wall vibrations

The finite element model of the bell was implemented in
COMSOL using the thermocaoustic-solid interaction mod-
ule. Such a model can predict the formation of a viscous
boundary layer at the walls of the tube, as well as the interac-
tion between the vibrating walls and the air column inside the
instrument. The problem is solved in a two-dimensional ax-
isymmetric geometry, which approximately reproduces the
conditions of the experiments (see Figure 6). An absorbing
perfectly matched layer is used to avoid wall reflections back
to the instrument and an extra mass is added at the mouth-
piece end to represent the mounting device.

Figure 6: Acoustic pressure field of a straight trumpet bell at
440Hz, modelled using a two-dimensional axisymmetric

geometry.

The vibrations of the system are excited by a vibrating
piston at the mouthpiece plane, producing a volume flow
with amplitude U=23 cm3/s at all frequencies (corresponding
to an amplitude of 2700Pa for the mouthpiece pressure at the
first impedance peak of the instrument at 191Hz). The trans-
fer function of the instrument is calculated by dividing the
pressure magnitude measured 1m away from the bell with
the pressure magnitude at the mouthpiece. Running the sim-
ulation twice, once with the instrument free to vibrate and
once with its walls being completely fixed, resulted in very
small differences in the transfer function, compared to those
expected from the experiments.

Analysing the model reveals that the interaction between
vibrating walls and air column is confined to the following:
the velocity of the air at the walls of the tube is equated to that
of the wall velocity (fulfilling a no-slip boundary condition)
and the internal tube pressure is applied as a boundary load
to the wall. However, as explained in [9], there is a further
effect due to the volume oscillations caused by the vibrating
walls.

4.1 Thermodynamic pressure modulation

The ideal gas equation, during an adiabatic process, is
given by

p(t)Vγ(t) = n(t)RT, (1)

where the pressure p(t), volume V(t) and number of moles
n(t) vary with time, T being the temperature, γ the heat ca-
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pacity ratio and R the universal gas constant. Thus volume
oscillations due to the wall vibrations with an amplitude V̂
have to be included in the pressure variation. The formu-
lation of this effect has been carried out in [9], assuming
isothermal conditions. Here adiabatic conditions are consid-
ered and the effective time varying pressure deviation (p+)
from the equilibrium pressure p0 can be calculated using a
Taylor expansion and neglecting second order terms:

p+(t) = p̂eiωt − γ
p0

V0
V̂eiθeiωt, (2)

where V0 is the equilibrium volume of the air column, p̂ the
oscillating pressure magnitude and θ the phase difference be-
tween the internal pressure and the wall oscillations. Hence
the extra pressure amplitude due to the wall oscillations is
given by

p̂V = γ
p0

V0
V̂eiθ = γ

p0

πr2z
(2πrzŝ)eiθ =

2γp0

r
ŝeiθ, (3)

where r is the bore radius, z the length along the bell axis and
ŝ the amplitude of the radial vibration of the air column.

4.2 Results

Superimposing this extra pressure on the one caused by
the piston excitation enhances the effect of the wall vibrations
on the transfer function of the bell, bringing it to comparable
levels to that of the experimental measurements. Figure 7
shows the transfer function of the bell, calculated 1 m away
from the bell, as well as the difference of the two curves.
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Figure 7: (top) Simulated transfer function of a straight bell
calculated 1m away from the bell as a function of

frequency, for the case of a free vibrating bell (blue) and a
fixed bell (red dashed). (bottom) Difference in the transfer

functions caused by fixing the bell.

It can be observed that fixing the bell in the numerical
simulations and damping it in the experiments produce sim-
ilar differences to the transfer function of the instrument. In
particular it appears that around the first (axial) structural

resonance of the bell the effect is maximised. The bell dis-
placement at these frequencies has a significant amplitude
in order to modulate the pressure inside the tube. As de-
picted in Figure 8, the displacement caused by a vibrating
piston excitation of the air column is a superposition of the
input impedance curve and the displacement curve caused by
a mechanical excitation at the mouthpiece.
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Figure 8: Input impedance of the free vibrating bell (top)
and rim displacement caused by a vibrating piston excitation

of the air column (bottom). The dashed curve shows the
mechanical resonance of the bell (rim displacement caused

by a structural acceleration at the mouthpiece).

There is still a significant difference between the mea-
sured differences shown in Figure 5 and the calculated ones,
plotted in Figure 7. In particular, there is a large deviation
at the low frequency range in the case of the measured data.
Such a difference can only be explained by a full-body mo-
tion of the bell at low frequencies, possibly including vibra-
tions of the mounting device, excited directly by the driver.
Therefore impedance measurements have been carried out,
replacing the horn driver with a BIAS impedance head [14].
The rest of the experimental conditions were the same as in
the case of the transfer function measurements. The differ-
ence in the input impedance for the damped and the free vi-
brating walls are plotted in Figure 9 and compared to the
differences calculated from the finite element model.

The calculated differences have the same order of magni-
tude with the measured ones, as well as a similar distribution
along the frequency axis. It is clear from this plot that damp-
ing the wall vibrations is more significant at the third and
fourth impedance peaks of the instrument. Such a behaviour
is expected if the differences are attributed to the axial vibra-
tions of the bell. As shown in Figure 8, the magnitude of the
bell displacement retains a larger value in a frequency range
around the axial resonance of the instrument, wherein these
two impedance peaks are located.
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Figure 9: Difference in the input impedance of the bell
caused by the wall vibrations measured experimentally (top)

and calculated numerically (bottom). The dashed lines
indicate the locations of the impedance peaks.

5 Conclusions

It has been demonstrated, both by experimental measure-
ments as well as using numerical simulations, that the ef-
fect of the wall vibrations can significantly alter the input
impedance and transfer function of a brass wind instrument.
Using straight trumpet bells in order to simplify the boundary
conditions of the problem, the measured effect of the wall vi-
brations could be predicted by physical modelling. The fact
that the problem was represented using a two-dimensional
axisymmetric geometry, indicates that the axial vibrations of
a trumpet bell are sufficient to explain the observed effects.

On the basis of this theoretical explanation of the effect of
wall vibrations it is now possible to simulate the wave prop-
agation inside tubes with vibrating walls. In order to model
complete wind instruments it is necessary to carefully exam-
ine their structural behaviour along the bell axis, and how this
is affected by the construction details of each instrument.
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