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The biomechanical materials are among the most complex mechanical systems. Most often, their micro-structure
are complex and random. This is the case for the human cortical bones which are considered in this paper. For
such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient of
porosity is then observed in the thickness direction but, in this case, none of the usual theories of porous materials
can be applied. For this reason, we present a simplified model with gradient for the elasticity tensor. The elasticity
tensor is modelled by a random field. In this paper, the parameters of this probabilistic model are identified with
experimental observations in ultrasonic range.

1 Introduction
A cortical bone layer is a biomechanical system that is

difficult to model in regard to the complexity level of its mi-
crostructure. The experimental identification of its effective
mechanical properties at the macroscale is usually carried out
using the axial transmission technique which is often mod-
eled with a simplified mean mechanical model. In this pa-
per, the simplified mean mechanical model is a fluid-solid
semi-infinite multilayer system (skin and muscles/cortical la-
yer/marrow). It is also assumed that the effective elasticity
properties of the solid layer (cortical bone) have spatial varia-
tions in the thickness (osteoporosis). A gradient of porosity is
then observed in the thickness direction but, in this case, none
of the usual theories of porous materials can be applied. For
these reasons, these systems are often modelled using a sim-
plified mechanical model which corresponds to a rough ap-
proximation of the real system. The uncertainties introduced
in the construction of this simplified mean model are taken
into account with an a priori probabilistic model in which
the elasticity tensor is a non-homogeneous and non-Gaussian
tensor-valued random field which has been constructed by C.
Soize using the information theory and the maximum entropy
principle. The parameters of this probabilistic model are (1)
the mean value of the effective thickness and the mean value
of the elasticity tensor of the cortical bone and (2) the pa-
rameters controlling the level of uncertainties which depends
on the spatial coordinates. A method and an application are
presented for the identification of these parameters using in
vivo experimental measurements in ultrasonic range with the
axial transmission technique.

2 Simplified model
The properties of the human cortical bone are studied by

using in vivo measurements obtained with the axial transmis-
sion technique: an acoustic pulse is applied on the skin layer
in the ultrasonic range and the velocity of the first arriving
signal is measured. A simplified model of the human cor-
tical bone with the skin, the coupling gel with a probe that
applied the acoustic pulse and the marrow has been devel-
oped in [8, 5]. This simplifed model is composed of an elas-
tic solid semi-infinite layer between two acoustic fluid semi-
infinite layers. Let R(O, e1, e2, e3) be the reference Cartesian
frame where O is the origin of the space and (e1, e2, e3) is
an orthonormal basis for this space. The coordinates of the
generic point x in R3 are (x1, x2, x3). The thicknesses of the
layers are denoted by h1, h and h2.

The first acoustic fluid layer occupies the open unbounded
domain Ω1 , the second acoustic fluid layer occupies the open
unbounded domain Ω2 and the elastic solid layer occupies the
open unbounded domain Ω. Let ∂Ω1 = Γ1∪Σ1, ∂Ω = Σ1∪Σ2
and ∂Ω2 = Σ2∪Γ2 (see Fig. 1) be respectively the boundaries

Figure 1: Geometry of the multilayer system

of Ω1, Ω and Ω2 in which Γ1,Σ1,Σ2 and Γ2 are the planes de-
fined by

Γ1 = {x1 ∈ R , x2 ∈ R , x3 = z1}

Σ1 = {x1 ∈ R , x2 ∈ R , x3 = 0}
Σ2 = {x1 ∈ R , x2 ∈ R , x3 = z}

Γ2 = {x1 ∈ R , x2 ∈ R , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore,
the domains Ω1, Ω and Ω2 are unbounded along the transver-
sal directions e1 and e2 whereas they are bounded along the
vertical direction e3. A line source modelling an acoustical
impulse is applied in domain Ω1. This line source is defined
with a source density Q1 such that

∂Q1

∂t
(x, t) = ρ1 F(t)δ0(x1 − xS

1 )δ0(x3 − xS
3 ) ,

in which F(t) = F1 sin(2π fct)e−4(t fc−1)2
where fc = 1 MHz is

the central frequency and F1 = 100 N; ρ1 is the mass den-
sity of domain Ω1; δ0 is the Dirac function at the origin and
xS

1 and xS
3 are the coordinates of a line source modelling the

acoustical impulse. At time t = 0, the system is assumed
to be at rest. Let ρ(x3) and [C(x3)] be the mass density and
the effective elasticity matrix of the solid layer at a point x3 in
Ω1. For a given effective elasticity matrix field x3 7→ [C(x3)],
the displacement field u in the solid layer Ω and the pressure
fields p1 and p2 in the two fluids Ω1 and Ω2 respectively, are
calculated using the fast and efficient hybrid solver presented
in [4].

3 Simplified model for a porous me-
dium with gradient

It is well-known that bone medium are made of porous
material. However, for the human cortical bones, the pore
sizes are not small with respect to the thickness of the corti-
cal layer. In addition, the pore size increases along the trans-
verse direction x3. In case of osteoporosis, this gradient of
porosity is such that, near interface Σ2, the cortical material
is mostly made up of a fluid. No usual theory on porous
medium [1, 2, 3] is suitable for modelling such properties.
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Hereafter, we then propose an approach that allows the mod-
elling of the elasticity matrix [C(x3)] to be still constructed
within the usual framework of the continuum mechanics. For
all x3 in [a, 0], the material in the cortical layer is assumed to
be locally an homogeneous transverse isotropic medium and
for all x3 in [z, b] it is assumed to be a fluid. Consequently, (1)
for all x3 in [0, a], we have [C(x3)] = [CS ] and ρ(x3) = ρS ;
(2) for all x3 in [z, b] we have [CF] and ρ(x3) = ρ2; where
[CS ] is the elasticity matrix of a transverse isotropic medium,
[CF] is the elasticity matrix of a fluid medium, ρS is the mass
density of the cortical layer without taking into account the
porosity and ρ2 is the mass density of the second fluid (the
marrow). All components of [CS ] are zeros except the fol-
lowing

[CS ]11 =
e2

L(1 − νT )

(eL − eLνT − 2eTν
2
L)

[CS ]12 =
eT eLνL

(eL − eLνT − 2eTν
2
L)
,

[CS ]22 =
eT (eL − eTν

2
L)

(1 + νT )(eL − eLνT − 2eTν
2
L)
,

[CS ]23 =
eT (eLνT + eTν

2
L)

(1 + νT )(eL − eLνT − 2eTν
2
L)
,

[CS ]44 = gT , [CS ]55 = gL ,

with [CS ]22 = [CS ]33, [CS ]12 = [CS ]13 = [CS ]21 = [CS ]31,
[CS ]23 = [CS ]32 and [CS ]55 = [CS ]66 and where eL and eT

are the longitudinal and transversal Young moduli, gL and gT

are the longitudinal and transversal shear moduli and νL and
νT are the longitudinal and transversal Poison coefficients
such that gT = eT /2(1 + νT ). All components of [CF] are
zero except [CF]11, [CF]12, [CF]13, [CF]21, [CF]22, [CF]23,
[CF]31, [CF]32,[CF]33 that are all equal to ρ2 c2

2. The model
of [C(x3)] and ρ(x3) is the following

[C(x3)] = (1 − f (x3)) [CS ] + f (x3) [CF] ,

ρ(x3) = (1 − f (x3)) ρS + f (x3) ρ2 ,

where f (x3) = 1 if x3 < b, f (x3) = 1 if x3 > a and f (x3) =∑4
k=0 ak x3

k if b ≤ x3 ≤ a in which coefficients a0, a1, a2, a3,
a4 are such that f (a) = 0, f (b) = 1 and the derivative of f
with respect to x3 is such that f ′(a) = f ′(b) = 0.

4 Probabilistic model of the thickness
and elasticity matrix of the cortical
layer

At the mesoscale modeling, the cortical bone constitut-
ing the elastic solid layer is a heterogeneous anisotropic ma-
terial for which the elasticity properties field is modeled by
a matrix-valued random field [C] = {[C(x3)] , x3 ∈ [b, 0]}.
The prior probabilistic model of [C] is chosen in the ensem-
ble of tensor-valued random field adapted to elliptic operator,
defined in [10, 11]. This probability model of the uncertain
parameters are constructed by using the maximum entropy
principle [9, 6, 7]. For all b ≤ x3 ≤ 0, [C(x3)] is a positive-
definite random matrix which is written as

[C(x3)] = [L(x3)]T [G(x3)][L(x3)] + [C0(x3)] ,

in which the deterministic matrix [C0(x3)] is positive-definite
and the matrix [G(x3)] is a positive-definite random matrix;

these two matrices are defined below. In the definition of
[C(x3)], an upperscript T denotes the transpose operator. By
construction, one has

E{[C(x3)]} = [C(x3)] , ∀x3 ∈ [b, 0] ,

in which [C] = {[C(x3)] , x3 ∈ [b, 0]} is the mean value
field defined in the previous section and the operator E{·}
denotes the mathematical expectation. Positive-definite ma-
trix [C0(x3)] must be such that, for all x3 in [b, 0], [C(x3)] −
[C0(x3)] is positive-definite. The n×n (with n = 6) upper tri-
angular matrix [L(x3)] corresponds to the Cholesky decom-
position of the positive-definite matrix [C(x3)]−[C0(x3)], that
is to say [C(x3)] − [C0(x3)] = [L(x3)]T [L(x3)]. The matrix-
valued random field [G] = {[G(x3)], x3 ∈ R} is defined as a
non-linear mapping of 21 independent second-order centered
homogeneous Gaussian random fields U j j′ = {U j j′ (x3), x3 ∈

R} with 1 ≤ j ≤ j′ ≤ n for which the autocorrelation func-
tions RU j j′ (ξ) = E{U j j′ (x3 + ξ)U j j′ (x3)} are all chosen equal
to a same unique function (2 `/π ξ)2 sin2(π ξ/2 `) depending
only on a spatial correlation length denoted by `. The ex-
plicit expressions of this non-linear mapping can be found in
[10, 11]. Let parameter δ be the dispersion coefficient de-
fined as δ2 = (E{‖[G(x3)]‖2F} − 1)/n. The probability density
function P[G(x3)] of random matrix [G(x3)] with respect to
the measure dÃ = 2n(n−1)/4 ∏

1≤i≤ j≤n[A]i j on the set M+ of
the symmetric positive n × n real matrices is then written as
[10, 11]

p[G(x3)]([A]; x3) = 1M+ ([A]) cn (det[A])bn exp{−antr[A]} ,

in which an = (n + 1)/(2δ2), bn = an(1− δ2) where δ is a dis-
persion coefficient and where cn is a normalization constant
and IM+ ([A]) is equal to 1 if [A] belongs toM+ and is equal to
zero if [A] does not belong toM+. It can be seen that p[G(x3)]
does not correspond to the probability density function of a
Gaussian random matrix. In addition, the probability density
functions p[C(x3)] of random matrix ([C(x3)] with respect to
the measure dÃ on the setM+ is written as

p[C(x3)]([A]; x3)
= cnorm1M+ ([A] − [C0(x3)]) det([A] − [C0(x3)])λ−1

× exp{−
n − 1 + 2 λ

2
tr(([C(x3)]−[C0(x3)])−1([A]−[C0(x3)])} ,

where tr(·) is the trace operator; cnorm is a normalization con-
stant; λ is a positive real parameters that depends on the sta-
tistical fluctuation of random matrices [C(x3)]. It can be seen
that p[C(x3)] does not correspond to the probability density
function of a Gaussian random matrix.

For the application to the cortical bone, we do not have
any information concerning matrix [C0(x3)] which is only
introduced to preserve the ellipticity property of the stiff-
ness operator. This matrix can be chosen, for x3 in [b, 0],
as [C0(x3)] = η0 [C(x3)] in which 0 < η0 < 1. In this case,
η0 can be chosen very small if no information concerning
[C0(x3)] is available.

With such a stochastic modeling, the displacement field
of the elastic solid layer and the two acoustic pressure fields
of the acoustic fluid layers are random fields denoted by U,
P1 and P2.

5 Application
In a previous paper [5], the components of matrix [CS ]

has been identified with an experimental database using mea-
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surement of the first arriving signal with the axial transmis-
sion technique. For the experimental configuration, a device
has been designed and is made up of nR = 14 receivers and
2 transmitters. A coupling gel is applied at the interface be-
tween the device and the skin of the patient. Each transmitter
generates an acoustical impulse in the ultrasonic range that
propagates in the coupling gel, the skin, the muscle, the cor-
tical bone and the marrow. The axial transmission technique
consists in recording these signals at the nR = 14 receivers
located in the device. The first arriving contribution of the
signal (FAS) is considered. Following the signal process-
ing method used with the experimental device, the velocity
of FAS is determined from the time of flight of the first ex-
tremum of the contribution. This experimental database al-
lows the components of matrix [CS ] to be identified (see [5])
and we obtained ρS = 1598.8 kg.m−3, eL = 17.717 GPa,
νL = 0.3816, gL = 4.7950 GPa, eT = 9.8254 GPa, νT =

0.4495 and δ = 0.1029. In this paper, we are interested by
the identification of parameter a which represents the thick-
ness of the healthy part of the cortical bone. Let the random
variable Q be defined by

Q =

∫ T

0

nR∑
k=1

|P2(t, xk
1)|2 dt ,

where T is the duration of an experimental signal and xk
1, with

k = 1, . . . , nR are the positions of the receivers along direc-
tion e1. For each experimental measurement m = 1, . . . ,Nexp,
the signal recorded by the receivers xk

1 with k = 1, . . . , 14
is denoted as t 7→ pm

2,,exp(t, xk
1). Those signals are modeled

as Nexp realizations P2,,exp(·, xk
1; θ1), . . . , P2,,exp(·, xk

1; θNexp ) of
a real-valued random field P2,,exp(·, xk

1) indexed by [0, T ].
We then introduce the random variable Qext defined by

Qext =

∫ T

0

nR∑
k=1

|P2,,exp(t, xk
1)|2 dt .

The m-th realizations Qext(θk) is then computed by

Qext(θm) =

∫ T

0

nR∑
k=1

|pm
2,,exp(t, xk

1)|2 dt .

The identification of a is carried out by minimizing the cost
function

F(a, `) =
(Q

ext
− Q)2

Q2
ext

+
(δQ,ext − δQ)2

δ2
Q,ext

,

where Q
ext

and δQ,ext are the mean values and the dispersion
coefficient of Qext which are estimated by with Nexp real-
izations Qext(θm), . . . ,Qext(θNexp ). In addition, Q and δQ are
the mean values and the dispersion coefficients of Q for a
given thickness a and a given spatial correlation length `. For
the application, the experimental measurements pm

2,,exp(t, xk
1)

have been computationally constructed for a cortical bone
with a = 2.5 × 10−3m, b = 4 × 10−3m and ` = 2 × 10−4m.

In Fig. 2, the graph of a 7→ F(a, `) is shown for different
values of `. It can be seen that the minimal values of func-
tions a 7→ F(a, `) are reached at aopt = 2.33 × 10−3 for the
different values of the spatial correlation length `.

6 Conclusion
In this paper we have considered the transient dynamical

response of a multilayer system submitted to an impulse in

Figure 2: graph of a 7→ F(a, `) is shown for different values
of `. Vertical axis: F(a, `). Horizontal axis: a

the ultrasonic range. The application concerns a biomechan-
ical system: the human cortical bone. This system is really
tricky to be modelled due to the lack of knowledge on its
micro-structure. For such a system, the micro-structure can
be altered near its interface with the marrow (osteoporosis).
A gradient of porosity is then observed in the thickness di-
rection but, in this case, none of the usual theories of porous
materials can be applied. This is the reason why we have
proposed a simple model of the elasticity tensor for media
with a gradient of the porosity in order to take into account
the alterations of the cortical bone micro-structure. Thus, in-
side the solid layer, the constitutive equation of the solid goes
to the constitutive equation of the fluid (the marrow). We
have taken into account the uncertainties by substituting the
elasticity tensor with a random field for which the probabilis-
tic model has been constructed using the maximum entropy
principle. A methodology has been proposed for the identi-
fication of the parameters of the probabilistic model. An ap-
plication is presented for which the thickness of the healthy
part of the cortical bone of the probabilistic model has been
identified as the optimal parameter of a cost function which
corresponds to the total energy of the random pressure pres-
sure field.
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