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This paper dealt with the description of large modulation of high frequency acoustic fields in periodic porous media.
High frequencies mean local dynamics at the pores scale, and therefore absence of scale separation in the usual
sense of homogenization. However, meanwhile the pressure is fast varying in the pores (according to periodic
eigenmodes), the mode amplitude can present large scale modulation, hence introduces another type of scale
separation on which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic
network of inter-connected Helmoltz resonators. The equations governing the modulations carried by eigenmodes,
at frequencies close to the eigenfrequency, are derived. Because of the local dynamic state, the number of cells
on which the carrying periodic mode is defined becomes a parameter. In a second part, the asymptotic approach
is developed for periodic porous media saturated by a perfect gas. With a strict use of the ”multi-cells” periodic
condition, one obtains the family of equations governing large modulation of high frequency waves. The significant
difference between modulations of simple or multiple mode are evidenced. Thus, this theory extracts, from the
comprehensive Floquet-Bloch modal space, the particular frequency range enabling large modulations, therefore
large correlation, of high frequency acoustic waves.

1 Introduction

This paper investigates in periodic porous media, the phe-
nomena of large modulation of high frequency acoustic waves.
The interest lies in the fact that despite the short acoustic
wavelengths, the acoustic field presents large correlation lengths.

High frequencies mean local dynamics at the pores scale,
and therefore absence of scale separation in the usual sense of
homogenization [9], [2],[3]. However, meanwhile the pres-
sure is fast varying in the pores (according to periodic eigen-
modes), the mode amplitude can present large scale modu-
lation. This situation introduces another type of scale sep-
aration on which the multi-scale asymptotic method can be
performed. This idea is in the same spirit than the study pro-
posed by [7] in the context of composite elastic media with
some difference in the theoretical implementation.

In the first part, the physical principle of this approach
is introduced on a network of inter-connected Helmoltz res-
onators. Equations governing modulations carried by a given
eigenmode, at frequencies close to the eigenfrequency, are
derived. Because of the local dynamic state, the number of
cells on which the carrying periodic mode is defined becomes
a parameter.

In the second part, the same question is addressed for pe-
riodic porous media saturated by a perfect gas. The asymp-
totic approach enables to derive the governing equation of
modulation. It is established that the situation of simple or
double mode differs significantly. Further a strict use of the
”multi” periodicity condition leads to describe the whole fam-
ily of large modulation phenomena.

2 Periodic network of Helmoltz
resonators

As an introduction of the method, consider an idealized
periodic porous medium, the channels of which are made of
interconnected Helmoltz resonators. Each resonator is made
of a large ”box” connected to a much smaller channel. For
the sake of simplicity all the resonators are assumed identi-
cal and their connections are actually in a single direction.
Hence, the medium consists in unidirectional identical and
parallel channels of periodic shape, and each channel ap-
pears as a periodic chain of large pores (”box” of length l0
and volume V) linked by small constricted pipes (of section
s, volume v and negligible length compared to l0). Then, to
describe acoustic wave propagation through this medium, it
is sufficient to focus on a single channel.

Acoustics of this medium can be described by the usual
equivalent fluid (or dynamic permeability) approach of porous
media, provided that the scale separation assumption is sat-
isfied [1], [3]. This latter applies for large wavelengths, cor-
responding to frequencies significantly lower than the eigen-
frequency of the resonator f0. In the sequel we focus on the
frequency range O( f0), where the usual approach becomes
irrelevant.

According to the classic simplified analysis of Helmotz
resonators, (i) thermal and viscous dissipation effects can be
neglected, (ii) the gas in the box is compressed adiabatically
and quasi-statically (limiting thus the investigated frequency
range), and (iii) the gas in the pipe suffers a negligible com-
pression. Conveniently the motion u of the gas at the aperture
of the box (and in the pipe) is taken as acoustic variable.

With these assumptions a channel may be sketched by a
line of mass-less spring k of length l0 alternating with rigid
point mass m. The resonator spring k is defined from the
compressibility of the gas box with aperture s, and the actu-
ator mass of the resonator is the mass of the gas in the pipe

k =
γPes2

V
, m = ρev

where Pe and ρe are the ambient equilibrium pressure and
gas density and γ the adiabatic coefficient. Consequently

ω0 = 2π f0 =

√
k
m
=

√
γPe

ρe

√
s2

Vv
= csound

√
s2

Vv

Notice that the dynamics of the resonator results from the
interaction between box and pipe, the gas in both domains
being in quasi-static regime.

2.1 Waves in 1D resonator network

Wave propagation in 1D spring-mass system has been
widely studied in the literature and in this case exact solu-
tion can be established. This latter explicitly accounts for the
periodicity of the system, however this condition can be ap-
plied either on the irreducible cell period Ω0 (of size l0 and
constituted by one spring one mass), or double cells period
Ω2 = Ω0 ∪Ω0 or multiple cells period ΩM = ∪MΩ0.

2.1.1 Irreducible period Ω0

Studying harmonic wave propagation at the frequency ω,
the motion un of nth mass (i.e. on the nth cell Ω0) is on the
form :

un = U0ei(ω t−K1 n l0) (1)
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where K1 (ω) is the wave number. The balance of forces on
the nth mass, reads

(un+1 − 2 un + un−1) + χ un = 0, χ = (ω/ω0)
2 (2)

Then replacing un by its expression Eq. (1) leads to the dis-
persion relation

sin2(
K1 (ω) l0

2
) = χ (3)

From Eq. (1), large wave lengths correspond to K1l0 �
0 [2π]. The unique physical value is K1l0 � 1 (since springs
have no mass) that belongs to the first Brillouin zone K1l0 ∈
[−π, π]. The others Brillouin zones are excluded. Developing
the left member of Eq. (3) near zero imposes a low frequency
range ω � ω0, that gives the usual description of long wave
propagation.

2.1.2 Double cells period Ω2

Reconsider the wave propagation problem set on the dou-
ble cells period Ω2 constituted of two masses, two springs.
Denote by un and wn the motions of two successive masses
of the nth period Ω2. By convention, wn is associated to the
”internal mass” which allows internal dynamic in the period.
Express the double cells periodicity leads to consider un on
the form:

un = U0ei(ω t−K2 n(2 l0)) (4)

First, the balance in the period leads to the following relation
between wn and the both motions un and un+1

wn =
un + un+1

2 − χ (5)

Then, the balance on the mass associated to un leads to

(un+1 − 2 un + un−1) − χ (χ − 4) un = 0 (6)

and to the dispersion relation

4 sin2 (K2 (ω) l0) = χ (4 − χ) (7)

Focus again situations of large scale evolution corresponding
to K22l0 � 0 [2π]. As stated previously, only the values in
the first Brillouin zone are physical, thus K22l0 � 1. De-
velop the left member of Eq. (7) near zero, leads to two fre-
quency ranges :
- ω � ω0, which is the low frequency case found in the
wave study based on Ω0 (in particular Eq. (7) indicates wn �
(un+un+1)/2, then successive masses follow almost the same
motion).
- ω � 2ω0. Interestingly, 2ω0 is the eigenfrequency of the
simple eigenmode of the double cells period Ω2 with peri-
odic boundary conditions. Note that, for frequencies beyond
2ω0, K2 becomes purely imaginary, hence phenomena are
confined in a boundary layer without long distance propaga-
tion.

In the high frequency band ω � 2ω0, Eq. (7) indicates
wn � −(un + un+1)/2, meaning that the motions of successive
masses are alternated. Therefore, the large scale phenom-
ena driven by K2, correspond to large modulations carried
by the periodic eigenmode. This describes a typical situation
of large modulation of high frequency waves.

2.1.3 Multi-cells period ΩM

The same method leads to the following dispersion re-
lation established for multiple cells period ΩM made of M
masses and M springs.

4 sin2

(KM(ω) M l0
2

)
= −

(
β−

M
2 − β M

2

)2
(8)

β =
2 −

(
ω
ω0

)2
+
ω
ω0

√(
ω
ω0

)2 − 4

2

Usual long wave propagation are obtained for KM Ml0 �
0 and ω � ω0. The modulation situations correspond to
KM Ml0 � 0 for higher frequencies. Develop the left mem-
ber of Eq. (8) near zero leads to several frequency bands,
each of them being attached to one ΩM periodic eigenmode
frequency. All modes are double except the simple mode at
2ω0 (when exists).

Those results evidence the possibility of large modula-
tion of high frequency waves in frequency bands centered
around the periodic eigenmode frequencies arising in multi-
cells period. The existence of two different scales, related
to the modes and to the modulation length, suggests the use
of upscaling method. This aspect is undertaken in the next
section.

2.2 Large modulation of high frequency waves
in a periodic network of resonators

The scale separation between the multi-cells period ΩM

of size l = Ml0, and the modulation length L naturally in-
troduces the scale ratio εM = l/L = M l0/L = M ε. The
macroscopic description is derived using the homogenization
of discrete periodic media [6], [8] adapted to multi-cells pe-
riod and high frequencies, briefly summarized herebelow.

2.2.1 Discrete homogenization method

Following the previous analysis, among the M masses of
nth period ΩM , the motion un of one of them is arbitrarily
chosen as leading variable located at a leading node (the mo-
tions of other masses being related to the leading variables
through the local balances in ΩM). The leading variable car-
ries the large scale modulations (denoted A). These latter are
continuous functions of the macroscopic variable x coincid-
ing with the leading nodes. Assuming the convergence when
εM tends to zero, modulations are expanded in powers of εM

un = u(x = n l) =
∞∑
0

εi
M

iA(n l) (9)

The frequency is expanded around the eigenfrequency of one
of the periodic eigenmodes of ΩM , (say Kth mode)

ω = ωK +

∞∑
1

εi
M

iω (10)

As the size of the period is small compared to the modula-
tion length, the variations of the motions between neighbor-
ing leading nodes are expressed using Taylor’s series, which
introduces the macroscopic derivatives. As the motions of
the non-leading masses are related to the leading variables, it
only remains to express the balance equations at the leading
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nodes. Then, introduction of the expansions and Taylor se-
ries of variables un leads to equations at different powers of
εM . This study focuses on the leading order only.

2.2.2 Macroscopic descriptions

The above procedure has been applied to periods consti-
tuted by one, two and three cells.

For irreducible period M = 1 the classic homogenization
at low frequency, described by Eq. (11) (′′ stands for double
spatial derivative, and A stands for 0A) is recovered. In this
case the modulation equation coincides with the classic wave
propagation equation.

For double cells period M = 2, the procedure applied
around the eigenfrequencyω = 2ω0 of the unique and simple
periodic mode yields Eq. (12) that governs the modulation A
of this mode at the leading order.

Modulations on triple cells period M = 3 around the
eigenfrequency ω =

√
3ω0 of the unique and double peri-

odic mode are described by Eq. (13). Note that contrary to
Eq. (12), the frequency term is always positive. Morevover,
the Ω3 modulation frequency is not an edge of the Brillouin
zone, and could not be derived with antiperiodic conditions
used in [7].

Ω0 : k l20 A′′ + m 2ω2 A = 0 (11)

Ω2 : k l20 A′′ + m
(
−ω2
+ (2ω0)

2
)

A = 0 (12)

Ω3 : k l20 A′′ + 4 m
(
ω −
√

3ω0

)2
A = 0 (13)

Replacing in Eq. (11, 12, 13) A′′ by −K2
M A, the expressions

of K2
M coincide with that given by Eq. (8) for KM Ml0 � 0.

Hence the exact solutions can be obtained independently
via a multi-scale asymptotic method. In the next section, it is
shown how the general principles of this is approach devel-
oped for 1D discrete systems can be transposed to 3D porous
media.

3 Large modulation of high frequency
waves in periodic porous media

Let us now consider the case of a periodic 3D porous me-
dia (of period Ω, characteristic size l, porosity φ, pore do-
main Ω f , and pores boundary Γ) and focus on the frequency
range where the scale separation is lost. In a first approach,
we consider that the thermal and viscous dissipation effects
can be neglected, as previously. Then the local description
within the pores is that of a perfect gas in adiabatic dynamic
regime governed by the following equations (by linearity the
harmonic time dependence exp(iωt) is skipped) :

div(γPegrad(u)) + ρeω2u = 0 ; onΩ f (14)

u.n = 0 ; on Γ ; u Ω − periodic (15)

This local problem presents exact solutions, i.e. the series of
modes u = ΦN for a discrete spectrum of frequency ωN =

2π fN , N ∈ N (here and in the sequel capital indices refers
to mode numbers). Before going further it is necessary to
clarify the notion of period used in this study.

3.1 Irreductible period and selected period

A periodic media is generally defined from its irreducible
period Ω0. However, any integer combination (n,m, p) in
the three directions of space of Ω0 define an other period
Ω =

⋃
n,m,pΩ0 of the media. In the usual homogenization

approach, the periodic problems (and solutions) at the local
scale are shown to be independent on the definition of the
period. This results from the quasi-static regime at the local
scale.

Now, when considering dynamics at the local scale, the
modes necessarily depend on the definition of the volume
(the period Ω) on which the periodic boundary conditions
apply (on ∂Ω). Indeed, the ”family” of mode increases as
the number of irreducible periods included in the period Ω
grows. For instance, the series of modes of double period,
Ω = ∪2,1,1Ω0, includes the Ω0 modes (”duplicated”) and new
modes specific to the double period. These latter modes re-
spect the periodicity condition on ∂Ω but not on the internal
boundary defined by ∂Ω0.

Therefore, we have to specify the period Ω on which the
periodic mode is defined : contrary to low frequency homog-
enization, the selected period Ω becomes a parameter of the
description. This is implicitly included in the sequel, where
the analysis is performed for any type of Ω = ∪n,m,pΩ0.
This procedure guarantees to reach the whole familly of large
modulation phenomena, associated to modes existing in the
collection of periods.

Notice that a subgroup of Ω-modes can be determined by
using ”phase shifted” periodic boundary condition on the ir-
reducible period Ω0. For instance as [7] an antiperiodic con-
dition Ω0 enables to identify a subgroup of modes of double
period, Ω = ∪2,1,1Ω0 (or a exp (iπ/n)-periodic condition for
Ω = ∪n,1,1Ω0, etc...). However, this convenient procedure
does not give access to the whole series of modes.

3.2 Modulation and asymptotic method

Choice a period Ω and select for example the Kth mode
i.e. the couple (ωK ,ΦK). By construction, modeΦK repeated
Ω-periodically, gives rise to a high frequency wave of con-
stant modal amplitude, or equivalently a high frequency wave
of infinite modulation length. Contrary to infinite length, a
large modulation length implies, (i) a non-constant ampli-
tude (of mode ΦK) varying at a scale L much larger than the
period l, and (ii) a frequency ω distinct but nevertheless close
to the eigenfrequency ωK , ωK since when ε = l/L→ 0, then
ω→ ωK .

To describe the situation of modulated Kth mode when
the modulation scale ratio is small, i.e. ε � 1, we ap-
ply the multi-scale asymptotic method well established in
the framework of homogenisation [9] of periodic media. In
this purpose, two space variables, y and x = εy - associ-
ated respectively to the variations at the cell and modulation
scales - are introduced, the usual derivative are changed into
∂/∂y + ε∂/∂x, the variable u is expanded in power of ε, each
term (specified by ante exponents) being Ω periodic, and the
frequency is also expanded in ε-power around ωK :

u(x, y) =
∞∑
0

εi iu(x, y) ω = ωK +

∞∑
1

εi iω (16)

The process, similar to [7], is achieved as follows : the expan-
sions are introduced in Eq. (14-15) rewritten with the two-

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1898



scale derivatives, then the terms of same power in ε are iden-
tified, and the problems obtained in series are solved up to
obtain the equation governing the large scale phenomena at
the leading order.

3.3 Modulation of simple mode

We focus here on the case where the considered modeΦK

is simple (double modes are addressed in the next section).

3.3.1 Leading order

The problem encountered at the leading order reads :

γPedivy(grady(
0u)) + ρeω2

K
0u = 0 onΩ f (17)

0u.n = 0 , on Γ ; 0u Ω − periodic (18)

Mode ΦK being simple, the solution is on the form

0u(x, y) = A(x)ΦK(y)

where A(x) is the slow varying amplitude of mode ΦK .

3.3.2 First order

The following problem set at the local scale is similar to
the previous problem, except the presence of 1S (0u) :

γPe
[
divy(grady(

1u)) + 1S (0u)
]
+ ρeω2

K
1u = 0 onΩ f (19)

1S (0u) = (20)

divy(gradx(0u)) + divx(grady(0u)) + 2ωK(ρe/γPe) 1ω 0u
1u.n = 0 , on Γ ; 1u Ω − periodic

To handle this problem let first establish that, following the
Fredholm alternative, we have :〈

1S (0u).0u
〉
= A(x)

〈
1S (A(x)ΦK).ΦK

〉
= 0 (21)

where 〈F〉 stands for 1
Ω f

∫
Ω f

Fdv. In this aim, notice that,

from the divergence theorem, the impenetrability condition
(on Γ) and the periodic condition (on ∂Ω f − Γ) :〈

divy(grady(
1u)).0u

〉
=

−
〈
grady(

1u).grady(
0u)

〉
=

〈
divy(grady(

0u)).1u
〉

Then taking the scalar product of Eq. (19) by 0u and of Eq. (17)
by 1u and subtracting provides equality Eq. (21). This latter
can further be simplified since (the non capital indices stand
for 3D-space direction) :〈

divy(gradx(
0u)) + divy(gradx(

0u)).ΦK

〉
= A,x j

〈
ΦK jdivy(ΦK) + ΦIkΦK j,yk

〉
= gradx(A).

1
Ω f

∫
∂Ω f

(ΦK ⊗ ΦK).nds = 0

because of the impenetrability and periodic conditions. Con-
sequently Eq. (21) simply reduces to (with the notationΦ.Φ =
|Φ|2):

2ωK(ρe/γPe) 1ω [A(x)]2
〈
|ΦK |2

〉
= 0

therefore the first corrector of frequency necessarily vanishes:

1ω = 0

Now, recalling that the modes {ΦN , N ∈ N} form an or-
thonormal basis, the solution 1u is looked in the form of lin-
ear combination (depending on the macrovariable x) of the
ΦN :

1u = B(x)ΦK +

∑
N�K

aN(x)ΦN

The coefficients aN are deduced by taking (i) the scalar prod-
uct of Eq. (19) byΦN , and (ii) the scalar product of the modal
equation of ΦN (equivalent of Eq. (17) where ωK is replaced
by ωN ) by 1u, then subtracting. This yields :〈

1S (0u).ΦN

〉
= −(ρe/γPe)(ω2

K − ω2
N)

〈
1u.ΦN

〉
= −(ρe/γPe)(ω2

K − ω2
N)aN

〈
|ΦN |2

〉
From the usual integral transformations and using the impen-
etrability and periodic conditions of the modes, the left hand
side term reads :〈

1S (A(x)ΦK).ΦN

〉
= gradx(A).

〈
ΦNdivy(ΦK) − ΦKdivy(ΦN)

〉
The two latter equalities define the coefficients aN(x) that de-
pend linearly on gradx(A). To sum up :

1u = B(x)ΦK −
∑
N�K

γPe

ρe(ω2
K − ω2

N)

gradx(A).
︷�︸︸�︷
ΦNΦK〈|ΦN |2
〉 ΦN

where, to lighten the writing, we introduced the following
notation for the combined vector build from two vectors Φ
and Ψ : ︷︸︸︷

ΦΨ =

〈
Φdivy(Ψ) − Ψdivy(Φ)

〉
= −

︷︸︸︷
ΨΦ

The expression of 1u explicitly means that the modulation of
the mode ΦK generates a redistribution of field of motion on
the other modes.

3.3.3 Second order

Accounting for the fact that 1ω = 0, the problem at the
second order reads:

γPe[divy(grady(
2u)) + 1S (1u) + 2S (0u)] + ρeω2

K
2u = 0 (22)

2S (0u) = divx(gradx(
0u)) + 2ωK(ρe/γPe) 2ω0u (23)

2u.n = 0 , onΓ ; 1u Ω − periodic

Following the same reasoning as for the first order, it is straight
forward to establish that :〈

[2S (0u) + 1S (1u)].0u
〉
= 0 (24)

and introducing the expressions of 0u and 1u:〈
2S (A(x)ΦK).ΦK

〉
+

〈
1S (B(x)ΦK).ΦK

〉
+

∑
N�K

〈
1S (aN(x)ΦN).ΦK

〉
= 0

Each term of this equality can be explicited :〈
2S (A(x)ΦK).ΦK

〉
=〈

divx(gradx(A(x)ΦK)).ΦK
〉
+ A(x)2ωK(ρe/γPe) 2ω

〈
|ΦK |2

〉
= A,xp xq

〈
ΦK pΦKq

〉
+ A(x)2ωK(ρe/γPe) 2ω

〈
|ΦK |2

〉
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Then, as in Eq. (21),
〈
1S (B(x)ΦK).ΦK

〉
= 0.

Finally, each
〈
1S (aN(x)ΦN).ΦK

〉
is determined similarly as

the coefficient
〈
1S (A(x)ΦK).ΦN

〉
expressed previously:

〈
1S (aN(x)ΦN).ΦK

〉
= gradx(aN(x)).

︷�︸︸�︷
ΦNΦK

= −A,xp xq

γPe

ρe(ω2
K − ω2

N)
(
︷�︸︸�︷
ΦNΦK)p(

︷�︸︸�︷
ΦNΦK)q

3.3.4 Features of simple mode modulation

The above results can be summarised as follows. The
leading order governing equation for the modulation at the
frequency ω of the simple mode (ωK ,ΦK) is of the form :

γPedivx(Tgradx(A(x)) + ρe(ω2 − ω2
K)A(x) = 0

where we use the o(ε2)-approximation : ω2−ω2
K =

2ω(ε22ωK)
and where the tensor T associated to mode ΦK is given by :

T =
〈ΦK ⊗ ΦK〉〈|ΦK |2

〉 − γP
e

ρe

∑
N�K

︷�︸︸�︷
ΦNΦK ⊗

︷�︸︸�︷
ΦNΦK〈|ΦN |2

〉 〈|ΦK |2
〉
(ω2

K − ω2
N)

Note that the modulation is driven by a strictly macroscopic
equation. Parameters of this latter are fully determined from
the dynamic properties of the period (modes) and the fre-
quency, independently of the boundary conditions. These re-
sults are consistent with the assumption of a scale separation
between the long scale modulation carried by the local mode.
They constitute a 3D generalisation of the result established
in section 2 on the 1-D network of resonators for the modu-
lation of the simple mode.

From its expression, the tensor T is O(1), symmetric by
construction, and therefore diagonalizable. Thus, any 3-D
modulation of the considered mode can be decomposed into
specific modulations along the three principal directions of
T . The principal values, denoted by Tα, α = 1, 2, 3 may be
positive or negative, and are expected to be different. This
evidences the anisotropy of the modulation phenomena.

Amplitude of the modulation in the α-principal direction
is governed by (′ stands for spatial derivative) :

γPeTαA′′ + ρe(ω2 − ω2
K)A = 0

and the amplitude variation takes the classic form (x stands
for the macro variable in principal direction α) :

A(x) = A+ exp(+iκx) + A− exp(−iκx)

where

κ(ω) =

√
ρe(ω2 − ω2

K)

TαγPe
=
ωK

csound

√
2

Tα
(
ω

ωK
− 1)

Thus, provided that (ω − ωK)/Tα > 0, the modulation oscil-
lates and propagates with a ”wavelength”Λα  λK (λK is the
wavelength in air at ωK) highly dependent on the frequency :

Λα(ω) = λK

√
Tα
2

1
ω
ωK
− 1
= O(

csound√
ω − ωK

√
ωK

)  λK

Conversely, when (ω − ωK)/Tα < 0, the modulation behaves
as ”diffusive wave”. Oscillations present an exponential de-
cay, and the penetration depth, of the order of |Λα|, is highly

frequency dependent. Note the asymmetry of modulation be-
haviour on both side of the modal frequency ωK . Further, be-
cause of anisotropy, the asymmetry can be inverted between
different principal directions (if two principal values are of
opposite sign). Obviously, only the propagative phenom-
ena gives rise to long correlation lengths of high frequency
waves.

3.4 Double mode modulation

We address now the case of multiple modes. For simplic-
ity, we consider the situation of double mode (say ΦK , ΨK

with 〈ΦK .ΨK〉 = 0) at the frequency ωK .

3.4.1 Derivation of the modulation equation

In presence of double modes, the solution of the leading
order problem Eq. (17, 18) becomes :

0u(x, y) = A(x)ΦK(y) + B(x)ΨK(y)

The next problem is identical to Eq. (19, 20), and introduces
the same term 1S (0u). However, the orthogonality condition
derived from the Fredholm alternative applies now to both
modes ΦK , ΨK and we have :〈

1S (0u).ΦK

〉
= 0 ;

〈
1S (0u).ΨK

〉
= 0

As seen section 3.3.2 :〈
1S (A(x)ΦK).ΦK

〉
=

〈
1S (B(x)ΨK).ΨK

〉
= 0

thus the orthogonality conditions simplify into :〈
1S (B(x)ΨK).ΦK

〉
= 0 ;

〈
1S (A(x)ΦK).ΨK

〉
= 0

that gives the two following coupled equations :

gradx(B(x)).
︷�︸︸�︷
ΦKΨK = −2ωK(ρe/γPe) 1ωA(x)

〈
|ΦK |2

〉
gradx(A(x)).

︷�︸︸�︷
ΨKΦK = −2ωK(ρe/γPe) 1ωB(x)

〈
|ΨK |2

〉
3.4.2 Features of double mode modulation

Eliminating B (for example) in the above set, and, us-
ing the o(ε)-approximation : 1ωε = ω − ωK , we derive the
following leading order set of equations for modulation at
frequency ω of the double mode (ωK ,ΦK ,ΨK) :

γPedivx(Rgradx(A(x)) + ρe4(ω − ωK)2A(x) = 0

B(x) = gradx(A(x)).

︷�︸︸�︷
ΦKΨK〈|ΨK |2

〉 γPe

ρe

1
2ωK(ω − ωK)

where the tensor R is defined by :

R =
γPe

ρe

︷�︸︸�︷
ΦKΨK ⊗

︷�︸︸�︷
ΦKΨK

ω2
K

〈|ΨK |2
〉 〈|ΦK |2

〉
and has the property (recall that λK is the wavelength in air
at ωK) :

R = O(
c2

sound

ω2
K

(〈|ΨK |〉 〈|ΦK |〉)2
(λK)2

1〈|ΨK |2
〉 〈|ΦK |2

〉 ) = O(1)

The characteristics of the modulation of double and simple
modes differs significantly. The expression of the symmetric
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tensor R implies that there is an unique non-zero principal

value RK associated to the principal vector
︷�︸︸�︷
ΦKΨK . This latter

defines the unique possible direction of modulation. In this
direction the amplitude of the modulation is driven by :

γPeRK A′′ + ρe4(ω − ωK)2A = 0

where

RK =
γPe

ρe

|ΦKΨK |2
ω2

K

〈|ΨK |2
〉 〈|ΦK |2

〉 > 0

The amplitude variation takes also the classic form :

A(x) = A+ exp(+iκ̃x) + A− exp(−iκ̃x)

with the real valued ”wave number” :

κ̃(ω) =

√
ρe4(ω − ωK)2

RKγPe
=
ωK

csound

√
4

RK
(
ω

ωK
− 1)2

Thus, the modulation is always a propagating phenomena. Its
”wavelength” Λ̃K is linked to the frequency by the relation :

Λ̃K(ω) = λK

√
RK

4
1

| ω
ωK
− 1| = O(

csound

|ω − ωK |
)  λK

Note that, contrary to simple modes, the modulation behaviour
is symmetric on both side of the modal frequency ωK . The
modulation wavelength is inversely proportional to the fre-
quency shift ω−ωK , for double mode, and to the square root
of the the frequency shift

√
ω − ωK for simple mode. Conse-

quently, the spectrum band for modulation of double modes
is wider than for simple mode and longer correlation lengths
can be expected.

4 Conclusion

The phenomena of large modulation of high frequency
acoustic waves in periodic porous media has been investi-
gated through three different approaches. Periodic networks
of Helmoltz resonators, reduced to 1D-spring-mass system,
are first studied analytically, then studied by multi-scale method
applied to periodic discrete media. 3D-porous media are ad-
dressed by multi-scale asymptotic method in continuum me-
chanics. These several analysis lead to similar conclusions.

The originality of this study is to departs from the clas-
sical framework of homogenization of periodic media based
upon the principe of scale separation. This latter is com-
monly understand in the sense that a physical variable, rele-
vant for the phenomena (pressure in poro-acoustics) varies at
the macro-scale. It follows as essential consequences, that :
- the local regime in the period is quasi-static at the leading
order (or at least in subdomain of the period),
- the relevant physical variables are preserved identical though
the up-scaling,
- a unique ”equivalent media” description applies on the whole
low frequency range,
- the homogenized description is independent of the selected
period (irreducible or not).

Considering higher frequencies implies that the physi-
cal variables vary locally according to the modes. However,
when the mode amplitude presents large scale modulation,
another type of scale separation on which the asymptotic
multi-scale procedure applies. The derived description and

usual homogenization are fundamentally different in nature
meanwhile both lead to macro scale formulation :
- through the up-scaling process, the type of variable are
changed (from pressure to mode amplitude), in addition to
the change of differential operator,
- contrary to an unique ”equivalent continuum media”, a fam-
ily of descriptions is derived for modulation phenomena,
- each description is attached to a specific eigenmode carry-
ing the high frequency modulated wave,
- consequently, a given description depends of the selected
period (irreducible or not) and is valid only in the vicinity of
the considered eigenfrequency.

Modulation phenomena involve ”full” dynamics at the lo-
cal scale. Consequently, it differs from Rayleigh scattering
(frequency lower than eigenmodes) [5], and from inner reso-
nance in highly contrasted materials [4]. ”Full” dynamics in
periodic media are usually described by the Floquet-Bloch
theory [10]. The specificity of the present approach is to ex-
tracts, from the comprehensive Floquet-Bloch modal space,
the particular frequency bands enabling large modulations,
therefore large correlation, of high frequency acoustic pertur-
bations. It also provides the governing modulation equation.
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