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We introduce a source localisation method dealing with an unknown reverberant environment. The measured
acoustic field is decomposed as the sum of a diffuse field and a source field, using a priori knowledge on these
fields, i.e. structured sparsity deduced from the governing equations of acoustics. Simulations and experimental
results in 2D domains, using greedy algorithms as well as optimisation-based methods, show that the method
is robust with respect to noise and sensors localisation. Additionnaly, the density of sensors required can be
lower than the Nyquist frequency. These facts make this method an interesting alternative to standard localisation
methods particularly when a large number of narrowband sensors are deployed.

1 Introduction
Source localization is a classic problem for which numer-

ous methods have been designed, especially in the free field
case where the Green function of the medium is known [1].
In the case of a reverberant environment, existing methods
needs a prior knowledge. This knowledge can be a database
of pre-measured Green functions [2], or informations about
the geometry of the room [3, 4].

Here, we propose a source localisation method dealing
with an unknown room, requiring no preliminary calibration.
This method is based on a decomposition of the acoustic
field as a source component and a reverberated component.
Apart from homogeneity and isotropy of the medium (a mild
assumption in the case of room acoustics), no further prior
knowledge is needed. For instance, boundary conditions or
the dispersion relation of the medium can be left unspecified,
allowing the application of this method to a wide range of
experimental setups (rooms, membranes, plates, etc.).

The price to pay for these performances is a larger num-
ber of measurements, placed around the area of interest. Note
however that this number is lower than the number of mea-
surements needed for the application of the sampling theo-
rem. Another interesting property of this method, is that it
can ignore noise sources located outside of the are of inter-
est, by treating them as a part of the diffuse field.

Note that while here we introduce the method using nar-
rowband measurements, an extension to wideband measure-
ments, requiring more sophisticated modeling, is possible,
but left for further research.

Section 2 introduces the model used by the method and
section 3 introduces two algorithms based on this model.
Simulated and experimental results are given in section 4 and
5, and section 6 concludes the paper.

2 Modeling the soundfield
For the sake of clarity, we will introduce the model in the

case of a room Ω with rigid walls. The pressure field p(x, t)
verifies the wave equation: ∆p − 1

c2
∂2 p
∂t2 = s(x, t)

∂p
∂n

∣∣∣∣
∂Ω
= 0

with c the wave velocity, assumed to be constant in the
medium, and s(x, t) the sources. We assume that the source
term is the sum of a few punctual sources at locations xi:

s(x, t) =
S∑

j=1

s j(t)δx j (x)

with δx j the Dirac mass at point x j.

After a Fourier transform in time, the wave equation be-
comes the Helmholtz equation: for all ω, the Fourier trans-
form p̂(x, ω) of the pressure verifies ∆p̂ + k2 p̂ = ŝ

∂ p̂
∂n

∣∣∣∣
∂Ω
= 0 (1)

where the wavenumber k equals ω/c. The source term is here

ŝ(x, ω) =
S∑

j=1

ŝ j(ω)δx j (x).

In free-field, that is with Sommerfeld boundary condi-
tions, the Green function of the Helmholtz equation is

G(x, x j) =
eik||x−x j ||

4π||x − x j||

and the solution to (1) can be written as a sum of Green func-
tions:

p̂ =
S∑

j=1

ŝ j(ω)G(x, x j).

Free-field source localisation method aims at decomposing
this solution as a sum of Green function. In a room, direct
application of these methods would fail. Indeed, the Green
function of a room can be significantly different from the
free-field Green function. To deal with this difficulty, we
suggest to reduce source localisation in a room to a problem
close to free-field source localisation, by carefully modeling
and manipulating the data.

To this end, we decompose the solution of equation 1 as
a free-field solution p̂s, sum of the free-field Green function
at points x j plus a correction term p̂0, solution of the homo-
geneous Helmholtz equation, such that the sum verifies the
boundary conditions:

p̂s(x, ω) =
S∑

j=1

ŝ j(ω)G(x, x j)

 ∆p̂0 + k2 p̂0 = 0
∂p̂0
∂n

∣∣∣∣
∂Ω
= − ∂ p̂s

∂n

∣∣∣∣
∂Ω

These two components have distinct models: the first is a
sum of a few Green functions, while the second is an homo-
geneous solution of the Helmholtz equation. This will allow
us to separate their contributions in experimental measure-
ments.

Before going further, we will slightly modify the decom-
position, trading physical meaning for better mathematical
properties: the Green function G is proportionnal to the Han-
kel function of order 0:

G(x, x j) =
ik
4π

h0(k||x − x j||)
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This Hankel function h0 is actually a combination of the
Bessel functions of first kind j0 and second kind y0:

h0(kr) = j0(kr) + iy0(kr)

The former is a solution of the homogeneous Helmholtz
equation and will be included in p0. The latter is then used
as the source term. This decomposition writes:

p̂s(x, ω) =
ik
4π

S∑
j=1

ŝ j(ω)y0(k||x − x j||)

 ∆ p̂0 + k2 p̂0 = 0
∂p̂0
∂n

∣∣∣∣
∂Ω
= − ∂p̂s

∂n

∣∣∣∣
∂Ω

The homogeneous term p̂0 can be approximated by a sum
of plane waves or Fourier-Bessel functions [5]. The number
L of plane waves needed to approximate p̂0 is significantly
lower than the size of the discretization needed by the sam-
pling theorem or standard numerical methods like finite dif-
ferences or finite elements: it scales like k while standard
discretisation sizes scale like k2.

The final decomposition of the acoustic field writes

p̂ = p̂0 + p̂s

p̂ ≈ ∑L
l=1 αlel(x) +

∑S
j=1 ŝ j(ω)y0(k||x − x j||).

where the el are plane waves exp(ikl · x) with wave vectors
kl drawn on the sphere of radius k. The unknowns are αl, the
coefficients of the decomposition of the diffuse field, ŝ j(ω)
and x j, the amplitude and positions of the sources, to be de-
termined. Note that the information we are interested in (po-
sitions of the sources) is contained in p̂s. After removal of
this diffuse field, the problem is very similar to free-field lo-
calisation.

While this mathematical analysis has been carried out for
a room with rigid walls, it does not depend on the boundary
conditions. For instance, the decomposition can be done in a
subset of the room. In this case, only sources inside the con-
vex hull of the measurements will be included in the source
term, sources outside the antenna will be included in the dif-
fuse component and not be considered.

3 Algorithms
The source field p̂s, being the sum of few contributions of

punctual sources, is a sparse vector: it can be approximated
by a sum of few atoms drawn from a pre-determined dictio-
nnary. Sparse recovery algorithms have been developped to
recover the original sparse vector from measurements, and
have already been applied to source localisation [1, 6]. In the
general case, they aim at recovering a sparse vector s from
measurements m = Dx where D is a matrix, called dictio-
nary, modeling informations about the measurement process
and the signal model.

Most of them fall in two categories:

• optimisation-based methods, aiming at recovering the
solution as the minimizer of a carefully chosen crite-
rion,

• iterative algorithms, identifying the components of the
signal one by one.

Here, we use variations of the algorithms to deal with the
slightly more complex sparse model describing the acoustic
fields.

The vector we have to decompose is the vector of mea-
surements of p̂ at points xm that we will call p. The diction-
nary is made of two sub-dictionnaries:

• A plane wave dictionnary W, with L plane waves sam-
pled at points xm. Its (m, l)-term is wml = exp(ikl · xm).

• A source dictionnary S, with sources located at candi-
date locations ym, sampled at points xm. Its (m, j)-term
is sm j = y0(k||y j − xm||).

The vector of measurements p then writes

p =Wα + Sβ

where β is assumed to be sparse: the nonzero terms in β
indicate the source. The number of nonzero terms, i.e. the
number of sources, is assumed to be small. No priors are
imposed on α.

3.1 Greedy source localisation algorithm
The first algorithm we propose is an iterative algorithm

based on Orthogonal Matching Pursuit. This algorithm iden-
tifies the nonzero components of the vector one by one, by
choosing, at each step, the atom the most correlated with
the signal, and removing its contribution. Here, this method
would fail, as the correlation of the field with the source dic-
tionnary is perturbed by the diffuse field.

The source localisation algorithm follows the same global
strategy, after removal of the homogeneous term, by pro-
jecting the signal on the orthogonal of the space spanned by
plane waves.

Note that, in the outline of the algorithm, W† denotes the
Moore-Penrose pseudo-inverse of W†, and that

(
W|sy j

)
is the

concatenation of the matrix W and the vector sy j .

Algorithm 1 Greedy source localization algorithm

Input: measurements p, number of sources n, plane waves
dictionary W, source atoms sy

Output: estimated positions of the sources y j

ps ← p −WW†p
for j = 1 to n do

y j ← maxy

∣∣∣∣〈sy,ps

〉∣∣∣∣
W←

(
W|sy j

)
ps ← p −WW†p

end for

3.2 Group Basis Pursuit
The most representative algorithm of this category is Ba-

sis Pursuit [7]. It recovers the sparse vector s as the solution
of the optimisation problem:

s = argmin||s||1 such that m = Ds.

The `1 norms acts as a proxy to the `0 norm, counting the
number of nonzero coefficients in x, but unfortunately non-
convex. Minimisation of different criterions can be used in
the case of more complicated sparsity models.
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(a) (b)

Figure 1: Numerical simulations : (a) Modulus of the
simulated field (b) Position of samples used for the

localization

Here, we solve the minisation problem

(α̂, β̂) = min
α,β
||α||2 + ||β||1 s.t. ||Wα + Sβ − p|| < ε

with ε being the amount of noise expected in the measure-
ments. The `2 norm on α means that it has not to be sparse
while the `1 norm on β promotes its sparsity.

4 Numerical simulations
To test the algorithms, we first use simulated data. For

better visualisation, these are run in 2D. The theoretical anal-
ysis still holds, replacing spherical Bessel function j0, y0
and h0 by their cylindrical counterparts J0, Y0 and H0. We
use FreeFem++ [8], a finite element solver, to simulated the
wave propagation in a membrane with Dirichlet boundary
conditions. Two sources are in the membrane, and 60 mea-
surements are used. The simulated field and the locations of
the measurements are plotted figure 1

4.1 Greedy algorithm
An estimation of the decomposition of the field as a

source component plus a diffuse component is shown figure
2. It is obtained by projecting the field on the space spanned
by the plane waves. Application of a free-field source lo-
calisation method here fails, as can be seen figure 3 (a): the
correlations of the atoms and the measurements do not al-
low the localization of the sources, because of the mismatch
between the model and the physical setup. More precisely,
the correlation with the complete field is the sum of the cor-
relation with the diffuse field and the source field. As the
diffuse field can be significantly larger than the source field,
e.g. near a eigenfrequency, its correlation with the measure-
ments, meaningless, corrupts the estimation.

Results of the proposed algorithm are shown figure 3
(b,c,d): correlations after removal of the diffuse field at the
first step and second step allow a correct estimation of the
source locations. The true localisations and their estimations
are plotted figure 3 (d).

While this not its main purpose, the algorithm can recon-
struct the field in the entire membrane, by using the estimated
decomposition of the field to compute the value at any point
in the membrane. This reconstruction is shown figure 4

(a)     (b)

Figure 2: Numerical simulations : Decomposition of the
measurements as (a) diffuse component p0 and (b) source

component ps

estimated positions
true positions

(a) (b)

(c) (d)

Figure 3: Numerical simulations : Correlations at the first
step of the greedy algorithm (a) before and (b) after the

projection. (c) Correlations at the second step. (d) Estimated
source positions.

Figure 4: Reconstruction of the field from the measurements

4.2 Group Basis Pursuit
As expected, direct application of Basis Pursuit with a

free-field model fails (cf. figure 5 (a)). Here the two sources
are visible, but a lot of artifacts appear near the borders.
These can be explained by a tentative of Basis Pursuit to ex-
plain the acoustic field as a sum of fundamental solutions,
similarly to what is done in the Method of Fundamental So-
lutions [9]. In this method, the sources would be located out-
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side of the domain of interest. Here, this is approximated by
sources near the boundaries. Correct modeling of the acous-
tic field, with a modified criterion, yields accurate localiza-
tion of the sources without artifacts (figure 5 (b). Both Basis
Pursuit and Group Basis Pursuit are solved using the spgl1
toolbox [10] [11].

(a) (b)

Figure 5: Numerical simulations : Sources estimated by (a)
basis pursuit with sources dictionary (b) group basis pursuit

with plane waves and sources dictionary

5 Experimental results
Experimental results are obtained using a metallic plate,

with one source (Figure 6 (a)). The plate is excited by a
piezoelectric transducer, and a laser vibrometer measures its
normal displacement. The behaviour of this displacement is
given by the Kirchhoff-Love equation

D∆2w + 2ρh
∂2w
∂t2 = f

where D is the bending stiffness of the plate, ρ its density, h
its thickness and f the normal force applied to the plate. Al-
though it does not really match with the model described at
the beginning of the paper, it can be shown, that the plane
wave decomposition still holds away from the boundaries
[12]. Indeed, the normal displacement can be approximated
by sum of plane waves and evanescent waves, which can be
neglected away from the borders without any significant loss
of precision. Source terms are sums of Bessel functions and
modified Bessel functions, but these will be neglected here.

Another difficulty is the fact that the dispersion relation
of the plate is not know, and needs to be estimated. We use
the method describe in [12]. While it was designed for ho-
mogeneous solutions, the presence of the source field, weak
compared to the diffuse field in this case, does not perturb the
estimation.

The normal displacement is sampled on a regular grid of
64 samples, with sampling period of 32mm, higher that what
would be prescribed by the sampling theorem: at frequency
f = 30631 Hz, the estimated wavelength is 49.4mm, and
the largest possible sampling period would be 24.7mm. As
shown in [12], this has no significant effect on the estimation
of the wavenumber or of the diffuse field. The samples used
and the amplitudes of the signals are shown figure 7.

Greedy algorithm: As there is only one source, we use
only one step of the algorithm. The correlations at the first
step of OMP (figure 8 (a)) does not allow the localisation of
the source. After projection, the maximum of the correlations

Personal

computer

Laser vibrometer

PZT

Measurements

(a) (b)

Figure 6: (a) Experimental setup (b) Amplitude of the field
measured at frequency f = 30 631 Hz on a 4mm sampling

grid.

(a) (b)

Figure 7: (a) Uniform sub-Nyquist sampling used for
localization (b) Amplitude of the corresponding measured

subsampled field

(a) (b)

Figure 8: Correlations at the first step of the greedy
algorithm (a) before and (b) after the projection, on the

experimental data.

(a) (b)

Figure 9: Source position and amplitude estimated by (a)
basis pursuit (source-only dictionary) (b) group basis pursuit

(full dictionary)

is clearly at the center, where the plate was excited (figure 8
(b)).

Group Basis Pursuit: Localisation with the free-field dic-
tionnary fails, with results worse than what was obtained in
the simulations (figure 9 (a)): the true source is not even vis-
ible. However, with Group Basis Pursuit and the complete
dictionnary, the source is correctly recovered at the center
(figure 9 (b)).
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6 Conclusion
A new source localisation method was introduced, deal-

ing with an unknown reverberant environment and narrow-
band measurements. Extension to wideband signals, or more
precisely multiple narrowband signals, with joint sparsity
across frequencies, will be investigated, as well as locali-
sation of directional sources, using a dictionnary of spher-
ical harmonics and a modified sparse mode. Some issues
still need to be resolved, such as the number of microphones
needed as well as their optimal placement. Finally compari-
son with other source localisation with reverberation will be
done
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