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Elastic guided waves are of interest for inspecting structures due to their ability to propagate over long distances.
However, when the guiding structure is embedded into a solid matrix, usually considered as unbounded, waveg-
uides are open and waves can be trapped or leaky. In the latter case, the leakage of energy into the surrounding
medium yields attenuation along the axis of the waveguide, which can strongly limit the application of guided wave
techniques. Analytical tools have been developed for studying open waveguides but they are limited to simple ge-
ometries (plates, cylinders). With numerical methods, one of the difficulties is that leaky modes, which attenuate
along the axis (complex wavenumber), grow exponentially along the transverse directions. A simple procedure
used with existing codes consists in using absorbing layers of artificially growing viscoelasticity, but large layers
are often required. The goal of this work is to propose a numerical approach for computing modes in open elastic
waveguides combining the so-called semi-analytical finite element method and a perfectly matched layer tech-
nique. Two-dimensional problems are considered. Numerical solutions are compared to analytical results. The
efficiency of both perfectly matched and absorbing layer techniques is evaluated.

1 Introduction
Elastic guided waves are of interest for inspecting struc-

tures due to their ability to propagate over long distances. In
several applications, the elastic waveguide, invariant along
its axis, is embedded in another solid matrix. When the guid-
ing structure is surrounded by another medium, usually con-
sidered as unbounded, waveguides are open and waves can
be trapped or leaky. In the latter case, the leakage of en-
ergy into the surrounding medium yields attenuation along
the axis of the waveguide. Owing to these radiation losses,
the axial wavenumber becomes complex. Such losses can
strongly limit the application of guided wave techniques.

When the velocity of shear waves in the waveguide is
greater than in the surrounding medium, no trapped modes
are present and only leaky modes occur [1]. Such a config-
uration is widely encountered in civil engineering applica-
tions, the embedding medium usually consisting of soft ma-
terials (e.g. cement, concrete, soil). An accurate determina-
tion of leaky modes appears to be a necessary step for non-
destructive evaluation (NDE) of embedded structures based
on guided waves.

Actually, leaky modes have often been considered for
NDE in solid waveguides [2, 3, 4, 5, 6, 7], for which modes
having low attenuation are desirable to maximise the inspec-
tion range. Analytical tools have been developed for mod-
eling open elastic waveguides [8, 9] but they are limited to
simple geometries (plates, cylinders).

For complex geometries, a classical approach relies on
the finite element discretization of the eigenproblem in the
transverse direction, which is often referred to as the Semi-
Analytical Finite Element (SAFE) method (see for instance [10,
11, 12, 13]). Yet for open waveguides, one difficulty arises
because the geometry is unbounded in the transverse direc-
tions. This difficulty is particularly severe due to the un-
usual behavior of leaky modes: while exponentially decreas-
ing along the axis, leaky modes exponentially grow along
the transverse directions. This phenomenon has been widely
studied in electromagnetism (see [14, 15] for instance) and
has sometimes been mentioned for elastodynamic waveguides [16,
17].

A simple procedure that can be used with existing codes
has been proposed in [7, 18], which consists in using absorb-
ing layers of artificially growing viscoelasticity. In practice,
large layers may be required in order to reduce artificial re-
flections by the absorbing layer.

Instead of absorbing layers, an alternative approach to
compute leaky modes is to use Perfectly Matched Layers
(PML). Such a technique has already been applied to the

scalar wave equation [19, 20] (i.e. acoustic, electromagnetic
or SH waves). The goal of this work is to compute modes
in open elastic waveguides by applying a SAFE-PML ap-
proach to the equations of elastodynamics (non-scalar). The-
oretically, the PML technique allows to strongly attenuate
any type of wave without reflection, thanks to an analytical
continuation of equations into complex spatial coordinates.
Compared to absorbing layers, one expects that the perfectly
matched property will allow reduction of the artificial layer
size. Another difference between the two approaches is sel-
dom mentioned: computing leaky modes with PMLs is math-
ematically relevant, since both leaky modes and PMLs are
defined through analytic extensions. On the contrary, the
ability of absorbing viscoelastic layers to approximate leaky
modes has, up to our knowledge, no theoretical explanation.

In this paper, one-dimensional modal problems are con-
sidered, i.e. bidimensional elastic waveguides corresponding
to stratified planes. In Sec. 2, the SAFE-PML approach is
presented. In Sec. 3, numerical solutions are validated thanks
to analytical results of the literature. The efficiency of the
perfectly matched technique is briefly compared to the ab-
sorbing layer method.

2 SAFE-PML method

2.1 Variational formulation
One assumes a linearly elastic material, small plane strains

and displacements in the (x, z) plane. The time harmonic de-
pendence is chosen as e−iωt. z is the waveguide axis, x is the
transverse direction. Acoustic sources and external forces are
suppressed for the purpose of studying propagation modes.

The 2D variational formulation governing elastodynam-
ics is given by:∫

Ω̃

δε̃T σ̃dΩ̃ − ω2
∫

Ω̃

ρ̃δũT ũdΩ̃ = 0 (1)

where dΩ̃ = dx̃dz (the tilde notation is explained in the next
subsection). The variational formulation holds for any kine-
matically admissible trial displacement field δũ = [δũx δũz]T .
δε̃ denotes the virtual strain vector [δε̃xx δε̃zz 2δε̃xz]T and σ̃
is the stress vector [σ̃xx σ̃zz σ̃xz]T . The superscript T denotes
the matrix transpose. ρ̃ is the material density.

The stress-strain relationship is σ̃ = C̃ε̃, where C̃ is the
matrix of material properties. If the material is isotropic, one
has:

C̃ =
E

(1 + ν)(1 − 2ν)

 1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2

 (2)
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where E is the Young modulus and ν denotes the Poisson
coefficient.

Separating transverse from axial derivatives, the strain-
displacement relation can be written as follows:

ε̃ = (Lx̃ + Lz∂/∂z)ũ (3)

where Lx̃ is the operator containing all terms but derivatives
with respect to the z-axis. For clarity, we have:

Lx̃ =

 ∂/∂x̃ 0
0 0
0 ∂/∂x̃

 , Lz =

 0 0
0 1
1 0

 (4)

2.2 Combining SAFE and PML
With a PML in the x direction, the formulation (1) can be

interpreted as the analytical continuation of the equilibrium
equations into the complex spatial coordinate x̃, with:

x̃ =

∫ x

0
γ(ξ)dξ (5)

γ is a complex-valued function of x, satisfying:

• γ(x)=1 for x 6 d;

• Im{γ(x)} > 0 for x > d,

where ]d,∞[ must be understood as the exterior domain (the
PML domain). In practice, the PML domain is truncated to
]d, d+h] with a closing boundary condition at d+h, arbitrarily
chosen (usually of Dirichlet type).

From Eq. (5), the change of variables x̃ 7→ x yields for
any function f̃ :

∂ f̃
∂x̃

=
1
γ

∂ f
∂x
, dx̃ = γdx (6)

where f̃ (x̃) = f̃ (x̃(x)) = f (x).
In addition to the PML technique, the SAFE method is

applied, which consists in applying an axial Fourier trans-
form to the equilibrium equations. This is equivalent to as-
sume an eikz dependence, where k is the axial wavenumber.

Combining SAFE and PML approach, the strain-displacement
relation (3) becomes:

ε =

(
1
γ

Lx + ikLz

)
u (7)

where Lx is defined from Eq. (4) by replacing x̃ with x.
Finally, the FE discretization of the variation formula-

tion (1) along the transverse direction x yields:

{K1 − ω
2M + ik(K2 −KT

2 ) + k2K3}U = 0 (8)

with the following elementary matrices:

Ke
1 =

∫
xe

1
γ
NeT LT

x CLxNedx, Ke
2 =

∫
xe NeT LT

x CLzNedx,
Ke

3 =
∫

xe γNeT LT
z CLzNedx, Me =

∫
xe ργNeT Nedx

(9)
where the column vector U contains nodal displacements and
Ne is a matrix of nodal interpolating functions of displace-
ment on the element.

Eq. (8) corresponds to an eigenvalue problem for the col-
umn vector U whose eigensolutions are the propagation modes.
Note that the problem has been reduced from two dimensions

to one dimension (from (x, z) to the transverse direction x of
the waveguide).

Given ω and finding k, the eigenproblem is quadratic.
The eigensystem can be linearized as:

(A − kB)Û = 0 (10)

with:

A =

[
0 K1 − ω

2M
K1 − ω

2M i(K2 −KT
2 )

]
(11)

and:

B =

[
K1 − ω

2M 0
0 −K3

]
, Û =

{
U
kU

}
(12)

This form corresponds to a generalized linear eigensystem
that can be solved by numerical solvers. Yet due to the pres-
ence of the PML layer, K1, K3 and M are complex matrices
and neither A nor B are Hermitian.

Thanks to the symmetry of K1, K3 and M and using the
property detDT = detD (D is any matrix), it can easily be
checked that if k is an eigenvalue of (8), then −k is also an
eigenvalue. Hence, the eigenproblem has two sets of eigen-
solutions (k j,U+

j ) and (−k j,U−j ) ( j = 1, ..., n), representing n
positive-going and n negative-going wave types (n being the
number of degrees of freedom (dofs)).

2.3 PML function
The function γ(x), user-defined and non-dimensional, must

be responsible for wave attenuation inside the PML layer
]d, d +h]. As recalled earlier, it must satisfy Im{γ} > 0 inside
the layer (x > d) and γ(x) = 1 outside the PML (for x 6 d).

A constant function (i.e. γ(x) = γ̄ where γ̄ is a complex
constant inside the PML) has generally been chosen when
considering open waveguide problems [21, 19, 22]. This
choice simplifies mathematical analysis of the problem.

However, the perfectly matched property ceases to exist
due to the combined effects of discretization and truncature
of the layer. As a consequence, it is desirable to have a rather
slowly varying absorbing function γ(x). Regardless waveg-
uide analysis, several smooth functions have been proposed
in the literature (see for instance [23, 24, 25]). One of the
most popular is γ(x) = 1 + iσ(x)/ω, where σ(x) is an in-
creasing quadratic function in the PML. γ(x) here depends
on the frequency.

In this paper, a parabolic function is proposed both for
the real and imaginary parts of γ(x). Any frequency depen-
dence is dropped in order to avoid the computation of SAFE
matrices at each frequency.

One defines γ̄, the average value of γ in the PML:

γ̄ =
1
h

∫ d+h

d
γ(s)ds (13)

The parameter γh can be readily interpreted. Let us denote kx

the transverse wavenumber for a given mode, obtained from
the dispersion relation. From the interface to the end of the
PML, wave fields are multiplied by eikxγh, if the PML acts
properly and reflection from the PML end is neglected. The
argument of the exponential is complex and can be decom-
posed as follows:

eikxγh = ei(Re(kx)Re(γh)−Im(kx)Im(γh))e−(Re(kx)Im(γh)+Im(kx)Re(γh))

(14)
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Therefore for a given mode, the term Re(kx)Im(γh)+Im(kx)Re(γh)
represents the expected attenuation at the PML end, and the
term Re(kx)Re(γh) − Im(kx)Im(γh) represents the oscillating
part of the wave. For leaky modes (Re(kx) > 0 and Im(kx) <
0), the attenuation is expected to increase if one increases
Im(γ) but decreases Re(γ). For trapped modes (Re(kx) = 0
and Im(kx) > 0), the attenuation is expected to increase if we
increase Re(γ).

We could conclude that Im(γh) should be high for a good
approximation of leaky modes and Re(γh) should be high
for a good approximation of trapped modes. In practice,
both leaky and trapped modes usually coexist, and we choose
Re(γh) with the same order of magnitude as Im(γh).

It is also noted that Re(γh) and Im(γh) cannot be too high,
otherwise the wavelength in the PML region becomes very
small, which requires a finer mesh.

3 Results
Numerical tests are realized for three multilayer waveg-

uides taken from the work of Lowe [8]. The first one is a
three layer structure where only leaky modes are present,
corresponding to a thin core of alpha case of 0.1mm embed-
ded on both sides by titanium half-spaces. The second test
case is a bilayer system, corresponding to a thin alpha case
layer of 50 µm on titanium half-space. This case is of in-
terest because the first mode is trapped in a low frequency
range and becomes leaky mode at higher frequencies. The
third case is also a bilayer system, an epoxy layer of 100 µm
on aluminium half-space, for which the first two modes are
trapped.

The longitudinal velocities cl and shear velocities cs of
materials are respectively: 6060 and 3230 m/s (titanium),
6666 and 3553 m/s (alpha), 6370 and 3170 m/s (aluminium),
2610 and 1100 m/s (epoxy). Densities are: 4460 kg/m3 (ti-
tanium, alpha), 2700 kg/m3 (aluminium), and 1170 kg/m3

(epoxy). These three cases will help to evaluate the efficiency
of numerical methods on both trapped and leaky modes.

3.1 Preliminary remarks
As an example, the geometry of a bilayer waveguide is

represented by Fig. 1. a is the core thickness, h is the thick-
ness of the PML layer, d is the position of the PML interface.

-

?

Medium 1

Medium 2

Medium 2 (PML layer)
6

?
h

6

?
a6

?

d

0

x

z

Figure 1: Geometry of a bilayer waveguide with PML in the
transverse direction. With a SAFE method, only the x

direction needs to be discretized.

Continuity of displacements and stresses is imposed at
each interface, i.e., between the core and semi-infinite lay-
ers. In this paper, the thickness of PML layers is set to 0.9a.
Following the suggestion of [19, 26], the PML layer is close

to the core (d = 1.1a) in order to reduce the effects of the ex-
ponential growth of leaky modes on the numerical results. A
Dirichlet condition is chosen at the PML end (zero displace-
ment). Finite elements are quadratic (three-node elements).

A difficulty is that the method will provide not only trapped
and leaky modes, which are intrinsic to the physics of the
problem, but also spurious modes which are resonating mainly
in artificial layers and depend on the characteristics of these
layers. Hence an important post-processing step consists in
identifying and separating physical modes from unwanted
modes. This step can be seen as modal filtering. The filter-
ing criterion used for our tests is the ratio of kinetic energy in
the PML region over the kinetic energy in the whole domain.
Physical modes are then identified if this criterion is smaller
than a user-defined value.

3.2 Validation
The reference solutions, taken from Lowe [8], are ob-

tained from an analytical approach. SAFE dispersion curves
are presented after modal filtering.

Let us first consider the three layer test case (titanium-
alpha-titanium). Fig. 2 compares the results computed with γ
constant and γ parabolic in the PML region, where γh = 1+2i
for both functions (h is kept constant). For conciseness, we
only plot the imaginary part of the axial wavenumber (atten-
uation) as a function of frequency.

The parabolic function gives better results than the con-
stant function. As already mentioned, this is explained by
the fact that the PML method is no longer perfectly matched
after discretization. Thus, the function γ should be chosen
as smooth as possible to minimize reflection and obtain good
simulation results. In the remainder, all PML results are ob-
tained with γ parabolic.

Figure 2: Im(ka) vs. dimensionless frequency for
titanium-alpha-titanium. Comparison between γ constant

and parabolic.

Fig. 3 represents the attenuation as a function of frequency
for the alpha-titanium bilayer (γh = 4 + 4i). Good agreement
is obtained between the numerical results and those of Lowe.
However, modes at low frequencies are filtered out due to in-
sufficient attenuation by the PML. In fact, as the transverse
wave number kx is generally small for modes at low frequen-
cies, the attenuating part of the term eikxγh becomes too small
(non-negligible reflection occurs at the PML end). One rem-
edy is to increase the PML thickness.
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Fig. 4 gives a zoom on the less attenuated mode of Fig. 3.
From the reference solution, it can be seen that this mode is
trapped until a dimensionless frequency close to 4 is reached.
When the mode is trapped, numerical results deviate from
the reference curve. However the difference between simu-
lation and reference is about 10−3 and numerical results are
still acceptable. Those results can be improved by increasing
Re(γh) (see Sec. 2.3, results not shown for conciseness), or
by increasing the PML thickness at low frequencies.

In conclusion, the SAFE-PML approach gives satisfying
results both for leaky and trapped modes.

Figure 3: Im(ka) vs. dimensionless frequency for
alpha-titanium

Figure 4: Same as Fig. 3. Zoom on the less attenuated mode.

3.3 Comparison with absorbing layers
Results obtained with PML are now compared with those

obtained with absorbing layers in the case of the three-layer
waveguide (titanium-alpha-titanium). The absorbing layer
method consists in creating an artificial viscoelastic medium,
the viscoelasticity growing smoothly in the transverse direc-
tion. Following [7, 18], elasticity coefficients are defined
with an imaginary part cubically increasing, as follows:

Ci j =


Ci j

(
1 − is

(
x−d1

h

)3
)

si x < d1

Ci j si d1 < x < d2

Ci j

(
1 − is

(
d2−x

h

)3
)

si x > d2

(15)

where d1 and d2 denote the interface positions of absorbing
layers and s is a user-defined parameter. The thickness h of

absorbing layers is set to 2.9a, i.e. about three times larger
than the PML thickness.

Fig. 5 compares the spectrum of λ = −k2 at the dimen-
sionless frequency ωa/cs = 17.68 obtained with PML and
absorbing layers. Physical modes obtained by Lowe [8] (red
triangles) are satisfyingly computed with both methods (though
not clearly visible in Fig. 6, the results of Lowe are superim-
posed on numerical results, presented by black plus and blue
circles). Because no modal filtering has been applied, one
can observe that many other modes are indeed computed, as
mentioned above.

With PML, such modes are located along two lines, both
having equal rotation angles. The effect of PML has been
thoroughly studied in [19, 26] for the scalar wave equation.
By a direct analogy, one can interpret these modes as the
discretisation of the continuous spectrum, whose rotation an-
gle is −2arg(γ) (about 116◦ here). With elastodynamics, the
main difference lies in the fact that two branch cuts associ-
ated with longitudinal waves and shear waves occur instead
of one with the scalar wave equation, which yields two con-
tinua.

Figure 5: Spectrum of λ = −k2 in the complex plane at
ωa/cs = 17.68 (titanium-alpha-titanium).

Fig. 6 gives the spectrum at the dimensionless frequency
ωa/cs = 9.49. One can observe that the PML method still
performs well, while the absorbing layer technique fails at
approximating physical modes. Surprisingly, attempts in op-
timizing the absorbing layer (by varying s and h) do not sub-
stantially improve these results. At this frequency, it seems
that the transverse exponential growth of leaky modes is not
sufficiently attenuated by the absorbing layers. This issue re-
quires further research.

For trapped modes, the absorbing layers can yet give ac-
ceptable results, as shown by Fig. 7 representing the dis-
persion curve (phase velocity vs. frequency) for the epoxy-
aluminium test case.
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