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For speeds up to 300 km/h, rolling noise is the main railway noise source. It arises from the acoustic radiation

of various elements such as wheels, rails or sleepers. The rail, which mainly contributes to rolling noise at mid-

frequencies and dominates from approximately 500 Hz to 1000 Hz, is an extended coherent source for which

classical array processing methods are inappropriate to noise source identification. The properties of the acoustic

field radiated by the rail are heterogeneous with regard to space and frequency, and depend on the vibration waves

that propagate along the rail through the structural wavenumbers. In this paper, an inverse parametric optimization

method is proposed to characterize the acoustic field radiated by a rail from microphone array measurements. The

unknown parameters of a vibro-acoustical model (amplitudes and complex wavenumbers) are estimated through

the minimization of a least squares criterion applied to the measured and modelled spectral matrices of the array.

First, simulations are performed in order to appraise the performance of the method, in the case of vertical point

excitations on the rail. This simple case is then validated experimentally for a single vertical point excitation using

a modal shaker and a horizontal linear array.

1 Introduction
In the existing context of railway transports development,

the reduction of noise annoyance is a main issue that con-

cerns many different actors, from the infrastructure owners to

the railway operators, not forgetting the material manufactur-

ers. In order to tackle noise at source, it is then necessary to

precisely identify and study the sources responsible for this

nuisance at train pass-by. For speeds up to 300 km/h, rolling

noise is the main railway noise source [1]. Among other

sources such as the wheels and the sleepers, the rail mainly

contributes to rolling noise from approximately 500 Hz to

1000 Hz [2]. Classical array processing methods such as

beamforming are commonly used for incoherent source iden-

tification in the farfield or point sources in the nearfield, but

are not adapted to the rail, due to its extended and coherent

nature [3]. Those methods provide least squares or maximum

likelihood estimates for one source with white additive noise.

Following this principle derived from the estimation theory,

a new array processing method is built by resolving a least

squares problem adapted to the vibro-acoustical properties

of the rail.

In section 2, the acoustic field radiated by the rail is stud-

ied for a vertical point excitation, using a Timoshenko beam

model for vibrations and a line array of coherent spherical

sources for the acoustic radiation. In section 3, an inverse

parametric optimisation method is developed in order to esti-

mate unknown parameters of the vibro-acoustical model de-

scribed in section 2: the amplitudes of Ne uncorrelated exci-

tations (wheel/rail contacts) and the complex wavenumbers

that describe the rail vibrations. The performance of the

method is investigated, beforehand through simulations in

section 4, and then through field testings with a modal shaker

in section 5.

2 Acoustic field radiated by a rail

2.1 Rail modelling
When the rail is excited by point forces representing the

wheel/rail contacts, vibration waves propagate away from

the forcing points. These different waves (vertical and lat-

eral flexural waves, torsion waves, cross-section deformation

waves) are characterized by their amplitudes and their com-

plex structural wavenumbers. The resulting displacements of

the rail induce acoustic power to be radiated in the free field,

with spatial properties depending on the wave properties [4].

For the numerical simulations, only vertical vibrations

are considered in this paper, and the rail is represented by

a Timoshenko beam which is suitable for frequencies up to

2 kHz [5]. The rail fastening system on a ballasted track is

modelled with mass-spring-damper elements (spring-dampers

for the rail pads and the ballast and a mass for the sleep-

ers), either periodically or continuously as a stack of spring-

damper and mass layers. For a unit vertical point excitation at

pulsation ω, located in ze, in the case of a continuous model,

the mobility of the rail is expressed as:

Vω(z) = iω
[
Fde−γd |z−ze | + iFpe−γp |z−ze |] (1)

where Fd, γd, complex, are the amplitude and the wavenum-

ber of a near field wave, and Fp, γp are the amplitude and the

wavenumber of a potentially propagative wave. Both com-

plex amplitudes Fd and Fp depend on γd and γp. For a given

complex structural wavenumber γ, two quantities are defined

from its real and imaginary parts:

• the real wavenumber kz = Im(γ) representing the prop-

agating part (in m−1),

• the decay rate Δ = Re(γ) · 20 log e representing the de-

caying part (in dB/m).

In practice, the measurement of these two quantities for

several waves requires the use of specific methods such as

Prony methods [6]. In our case however, in order to validate

the model for vertical vibrations up to 2 kHz, such methods

are not necessary. The measurement of the global track decay

rate with impact hammer has then been used. This quantity

which is used as a standard to characterize acoustically a rail-

way track is defined as a limited and discrete integral of the

squared displacement along the rail [7]:

Δω(dB/m) =
10 · log e

zmax∑
z=0

|Aω(z)|2
|Aω(ze)|2Δz

(2)

with Aω(z) the displacement along the rail at pulsation ω
(mobility or accelerance), in response to a point excitation

at z = ze.

In figure 1, several decay rates for vertical vibrations are

plotted against frequency: the predicted decay rates for the

propagative wave and the near-field wave, and the global

track decay rate, from predictions and from impact hammer

measurements. They relate to the measurement site that will

be investigated in section 5. The rail and track parameters

that were used for predictions were extracted from previous

measurements performed on the same site [8].

The near-field wave is strongly attenuated in the whole

frequency range while the behaviour of the propagative wave
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Figure 1: Decay rate of vertical rail vibration, predicted and

measured for a periodically supported Timoshenko beam.

is more frequency dependent, with two stop-bands (in grey)

in which the wave is strongly attenuated. Those behaviours

are related to the resonance frequencies of the spring-damper-

mass system. At around 1100 Hz, a peak is observed for the

propagative wave and the track decay rates. They are relative

to the so-called pinned-pinned frequency where the wave-

length in the rail is twice the spacing between two sleepers.

For the global track decay rate, figure 1 shows good agree-

ment between predictions and measurements up to 2 kHz.

The acoustic equivalent model for the rail is a line array

of coherent spherical monopoles with equal spacing along its

z-axis [2]:

Figure 2: Acoustic equivalent model for the rail.

The amplitude of each monopole located at z = zs is pro-

portional to the mobility of the rail at the same point. The

spatial acoustic field p(r, z) is a superposition of the elemen-

tary fields relative to each point source:

p(r, z) = iωQl0

∫ +∞
−∞
Vω(zs)

e−ikrs(z,zs)

4πrs(z, zs)
dzs (3)

where:

(r, z) are the cylindrical coordinates,

rs =
√

r2 + (z − zs)2 is the distance to the rail axis,

Ql0 is the unit linear mass flow of the rail.

2.2 Spatial characteristics
For the numerical simulations, the integral (3) is limited

and sampled, according to convergence tests. For a given

frequency, the spacing between two adjacent sources is set to

1/5 min(λair, λrail) and the z-axis truncation is made when a

decay of 60 dB is reached for the rail mobility with regard to

the mobility at the nearest excitation. For a single excitation

at ze = 0 m, and for a periodically supported model, figure

3 represents the phase of the acoustic field radiated by the

rail, for three different frequencies. The corresponding decay

rates of the propagative wave are given on top of each map.

For f = 340 Hz, vibration waves are strongly attenuated

in the rail (17.7 dB/m) and the only part of the rail that ra-

diates acoustic energy in the neighbourhood of the excita-

tion. In this case, the acoustic field has the characteristics of

a spherical field as shown in figure 3(a). This particular field

could be entirely characterized by the position of a spher-

ical monopole (actually the position of the excitation) and

its amplitude. This identification could be performed with a

classical beamforming method designed for spherical waves.

For high frequencies, the propagative wave is hardly at-

tenuated (0.28 dB/m here, for f = 1500 Hz) and vibration

waves propagate over long distances away from the forcing

point. In this case, the rail can be acoustically approached by

two semi infinite cylindrical monopoles, each being crossed

by a monochromatic vibration wave Ae±ikz(z−ze), where kz =

Im(γp). The resulting acoustic field is characterized by an

amplitude and a radiation direction θ directly linked to the

structural wavenumber as follows [4]:

θ = arccos (kz/k) (4)

where k is the wavenumber in air.

In this case illustrated in figure 3(c), the acoustic field

radiated by the rail could be characterized through a classical

beamforming designed for plane waves.

For other intermediate cases (e.g. for the pinned-pinned
frequency or for intermediate decay rates), the acoustic field

can no more be approached by elementary acoustic sources

such as spherical or cylindrical monopoles. Figure 3(b) high-

lights heterogeneous spatial properties of the field. Addition-

ally, for more complicated cases (multiple wheel/rail con-

tacts for example), this spatial variability will be even greater.

There is no immediate beamforming method that could char-

acterize the acoustic field in this case.

The purpose of this study is to design a new array pro-

cessing method adapted to the specificities of the acoustic

field radiated by the rail in the whole frequency range of in-

terest. This new method should include as much knowledge

as possible on the source physics i.e. location, amplitude

and vibro-acoustical characteristics. In section 3, a vibro-

acoustical source model is built for the rail. Some of the

parameters of this model are then estimated through the min-

imization of a least square criterion applied to the estimated

and modelled spectral matrices on any microphone array.

3 Inverse parametric optimization
method adapted to the rail

From section 2, it is obvious that the specificities of the

acoustic field radiated by the rail are related to its vibratory

behaviour. As long as the rail vibrations can be seen as a

superposition of different waves, the resulting acoustic field

can then be characterized by these waves properties: ampli-

tudes and wavenumbers. The method proposed here consists

in estimating these parameters through an inverse optimisa-

tion process.

3.1 Vibro-acoustic source model for the rail
Let us consider Ne uncorrelated complex excitation forces

Fn located at z = zn, and a single type of vibration (vertical
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Figure 3: Phase of the acoustic field radiated by a rail for vertical vibrations, with a periodically supported beam model.

bending for example). According to equations (3), the acous-

tic field in space p(r, z) can be written for a given pulsation

as:

p(r, z) =

Ne∑
n=1

iωQl0 Fn

︸���︷︷���︸
An

+∞∫
−∞
Vn

(
zs; zn, ζ

) e−ikrs(z,zs)

4πrs(z, zs)
dzs

︸���������������������������������︷︷���������������������������������︸
vn(zn, ζ)

(5)

where ζ is the vector containing the unknown wavenumbers

for the considered type of vibrations. In the case of vertical

bending waves modelled by a Timoshenko beam, according

to equation (1), we have: ζ =
t[
γd, γp

]
.

Finally, the acoustic pressure is evaluated on each micro-

phone of some array to build the vector P of dimension Nc

equal to the number of microphones:

P =
Ne∑

n=1

Anvn(zn, ζ) (6)

where An is the complex vibro-acoustical amplitude of the

source n and vn(zn, ζ) is the steering vector associated with

the source n (the term source refers here to the association of

an excitation with a type of wave). In the following, we sup-

pose that the positions zn are known and we write therefore

vn(ζ). In practice, the steering vectors vn(ζ) are normalized

so that ‖vn(ζ)‖ is also included in An.

3.2 Least square optimization problem
As the excitation amplitudes are supposed to be random

and uncorrelated, they are characterized by their unknown

variances X =
[
σ2

1; . . . ;σ2
Ne

]
. Following the probabilistic

nature of the problem, the modelled spectral matrix on the

array can be written as:

Γmod
(
X, ζ
)
=

Ne∑
n=1

σ2
n vn(ζ).vn(ζ)† + σ2

bI (7)

Where I is the identity matrix and σ2
b is the variance of a

spatially white gaussian noise. In this paper σ2
b = 0, but the

influence of noise on the method is detailed in [8].

The least squares criterion C is the squared error between

the modelled and the measured spectral matrices, in terms of

the Frobenius norm:

C(X, ζ) =
∑
m,n

∣∣∣∣̂Γm,n − Γmod
m,n

∣∣∣∣2 = ∥∥∥∥Γ̂ − Γmod
∥∥∥∥2

F
(8)

where Γ̂ is an estimation of the spectral matrix measured on

the array.

The solution of the estimation problem is found by min-

imizing the criterion C with respect to X and ζ. Actually,

this can be seen as a projection problem. Let H be the pre-

Hilbert space of the hermitian matrices of size Nc × Nc to-

gether with the scalar product 〈X|Y〉 = tr (X ·Y). The set of

the vn(ζ)v†n(ζ) products provides a subspace of H.

The criterion C reflects the distance between Γ̂ and some

matrix Γmod in the subspace. For a given ζ, this is the mini-

mum distance if and only if Γmod is the orthogonal projection

of Γ̂ in the subspace generated by the vn(ζ)v†n(ζ) matrices. In

this linear algebra context, it can be proved that this solution

exists and is unique [8]:

(X̂, ζ̂) = arg min
X,ζ

C ⇔
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ̂ = arg max

ζ
UtV−1U

X̂ = V−1U
∣∣∣
ζ=ζ̂

(9)

with, leaving out the ζ dependency for vn(ζ),

Vm,n =
〈
vm v†m | vn v†n

〉
=
∣∣∣v†m vn

∣∣∣2
Un = v†n

(̂
Γ − σ2

bI
)

vn

From equation (7) there is evidence that the problem is

linear with respect to the variances σ2
n. Thus, an analytical

solution is found for X̂ in (9), while the estimation of ζ still

requires to minimize a function with X = X̂. In the case of a

unique gaussian random source, this solution is equivalent to

the solution provided by the maximum likelihood estimator

[8, 9]. Moreover, if the steering vectors v are designed for

a spherical or a plane wave, the solution (9) is equivalent to

the one obtained with classical beamforming (where ζ is the

source position or direction). This shows that the estimation

method proposed here is nothing less than the application of

the estimation theory to a more complex problem than those

usually treated by beamforming.

3.3 Positivity of the estimated variances
Even if the theory proves the existence and the unique-

ness of the solution in any case, it could lead to negative esti-

mations for someσ2
n in practice. This renders the fact that the

projection basis (the set of vn v†n) may not be suitable for the

problem. In other terms, this means that we may try to find

the characteristics of a source that is not effectively present
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or that is not significant. Thus, for a given set of Ne intended

sources, when a σ2
n is found negative, the problem will be

solved for the 2Ne − 1 cases with at least one of the variances

of the sources set to 0. The criterion C is evaluated in each

case, and the final solution will be the one that minimizes C.

4 Performance of the method
Beforehand, simulations have been performed to appraise

the performance of the method in different cases. This sec-

tion summarizes the main results. All the measured data have

been simulated from a vibro-acoustical model such as pre-

sented in section 2.1. The acoustic model is the equivalent

line array of spherical monopoles, and the vertical rail vibra-

tions, through Vω, are determined from a periodically sup-

ported Timoshenko beam model. A line array of 13 equally

spaced microphones is used, parallel to the rail axis at 2.5 m

from it, with central microphone position zc varying with re-

spect to the excitations (zc ∈ [ze; 5 m] in the case of a single

excitation at ze). For each frequency, the microphone spacing

d is set to fulfill the spatial Shannon criterion: d = λair/2.

For the source model and therefore Γmod, the same equiv-

alent acoustic model is used (Fig. 2) while different models

for the rail vibrations are tested, more or less simplified. For

a given problem, X and ζ are estimated from equation (9) and

the acoustic field is rebuilt from equation (3). The represen-

tativeness of the rebuilt (estimated) acoustic field compared

with the true (simulated) field is then evaluated in terms of

the following criterions:

• Total acoustic power radiated by the rail.

• Average directivity of the acoustic field along a line

parallel to the rail (at 2.5 m and 7.5 m).

• Average squared acoustic pressure along the same line.

In a first step, the source model is built assuming the ζ
parameters (i.e. the complex wavenumbers) to be known.

In this case, the optimization process only concerns the es-

timation of the variances X̂ which is analytically performed

according to (9). It has been shown that:

• Additive noise has only a slight influence on X̂ (less

than 0.7 dB error for 0 dB SNR).

• The method is robust with respect to errors on the wave-

numbers as long as the array centre is in front of the

excitation.

• A simplified continuously supported Euler beam source

model (γd = −iγp and Fd = Fp) can be used for vibra-

tions, except for the pinned-pinned frequency.

In a second step, the parameters ζ are estimated simulta-

neously with the variances X. In order to evaluate the method

independently of any numerical optimization algorithm, the

simplified ’continuous-Euler’ model is assumed for the source

model, which means that only one complex wavenumber is

unknown: ζ = t[Δ, kz
]
. The fonction F = UtV−1U to be min-

imized can then be plotted and studied in a 2-Dimensional

(Δ, kz) discrete and bounded space, allowing reliable values

for Δ and kz and sufficient precision. It has been shown that:

• For high decay rates, the shape of F is quite flat and the

discriminatory ability of the method is limited, both for

Δ and kz estimation. For lower decay rates the method

is very selective regarding kz, and only slightly better

for Δ.

• The resolution is better when the array is away from

the excitations.

• The simplified ’continuous-Euler’ source model leads

to good estimates of γp (wavenumber of the propaga-

tive wave of the true ’Periodical-Timoshenko’ model),

even at the pinned-pinned frequency.

Figure 4 is an example plot for F, in the case of a ’periodical-

Timoshenko’ true model versus ’continuous-Euler’ source

model. The estimated wavenumber (+) is very close to the

wavenumber of the propagative wave for the true model (◦).
It was found that the reconstructed acoustic field is represen-

tative of the true field except for the directivity at the pinned-
pinned frequency, since the track was supposed to be contin-

uous in the source model.
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Figure 4: 2-dimensional plot of 10 log F for a simplified

’continuous-Euler’ source model at pinned-pinned
frequency. Excitation between two sleepers, zc = 3 m.

From this numerical study, some inner parameters of the

method can now be fixed to provide the best performances

for reduced complexity. First, the source model can be based

on a simplified ’Continuous-Euler’ model. The variance of

the sources should be estimated when the array is close to

them and the other parameters (the complex wavenumbers)

should be estimated when the array is shifted away from the

sources (about 3 m).

5 Acoustic measurements
A 30 m long rail is periodically supported on a classical

ballasted track, with resilient boots under the sleepers ac-

counting for the ballast. The rail is vertically excited by a

modal shaker between two sleepers (ref. ze = 0 m) near the

middle of the rail length. A linear array of 21 microphones

is parallel to the rail axis, at R = 2.64 m from this latter, with

centre microphone abscissa zc = 3 m. The array is made

of two nested sub-arrays of 13 microphones with different

apertures, which are used as follows: the array with the mi-

crophone spacing d = 15 cm is used for frequencies up to

2000 Hz and the one with d = 5 cm is used beyond. The

experimental set-up is shown in figure 5.
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Figure 5: Experimental set-up.

The excitation is a pseudo-random signal (amplitude mod-

ulation) centred around the centre frequency of each third-

octave band from 160 Hz to 3150 Hz. The method described

in section 3 is applied to find the complex wavenumber ζ =
t[Δ, kz

]
of a ’continuous-Euler’ source model, such as in sec-

tion 4. Figure 6 represents the wavenumber (a) and the decay

rate (b) of the propagative vertical bending wave, estimated

with our method applied to the measurements, and predicted

from a fitted ’periodic-Timoshenko’ model (see Fig. 1).
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Figure 6: Wavenumber (a) and decay rate (b) of the vertical

bending wave in the rail (γp), estimated and predicted.

The wavenumbers are well estimated, especially for fre-

quencies that correspond to low decay rates, where the acous-

tic field radiated by the rail becomes cylindrical. When the

decay rate is high, as predicted by the simulations, the method

is less discriminant: at 316 Hz kz is estimated with some er-

ror, at 250 Hz the method did not even provide a solution

(no convergence in the plan considered). The decay rates are

also better estimated for low values, but some of them were

found null. In those cases as well as for strongly overesti-

mated high decay rates, simulations proved that the acoustic

field remains correctly rebuilt [8].

6 Conclusion
In this paper, the acoustic field radiated by the rail is char-

acterized with a linear microphone array, through an inverse

parametric optimisation method. The method is based on

the least square criterion applied to the measured and the

modelled spectral matrices on the array. The vibro-acoustical

model chosen for the rail is a superposition of structural waves

for the vibration and a line array of spherical acoustic mono-

poles for the radiation. The estimated parameters are the

wavenumbers and the amplitudes of the Ne uncorrelated sour-

ces of the model (i.e. Ne associations of an excitation with

a type of wave). In a first step, simulations have been per-

formed to appraise the efficiency of the method. The esti-

mation of the amplitudes is robust with respect to modelling

errors when the excitations are in front of the array centre.

For the estimation of the wavenumbers, the method is more

discriminant when the array is away from the forcing point.

Finally, the proposed method has been validated in situ for

the vertical bending of a rail excited with a modal shaker:

the results are correct, except at frequencies for which the

waves are strongly attenuated.
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sité de Grenoble, PhD thesis (2011)
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