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Inner ear is constituted of fluid-filled ducts partitioned with an elastic structure, the organ of Corti. When the inner

ear is excited by sound, travelling waves appear along the organ of Corti and stimulate the sensory cells. A peak of

vibration is reached at a particular place depending on the excitation frequency. The waves are strongly attenuated

after this place. Due to the complexity of in vivo experimentations, some aspects of physiological functions still

need to be investigated.

For this purpose, an experimental setup reproducing the passive behavior of the inner ear has been designed and

manufactured. Standing waves are usually observed on artificial cochlea devices due to wave reflection on bound-

aries. Acoustic black holes are known as vibration absorbers for thin structures. In this paper, an immersed acoustic

black hole is used to reduce the reflected wave. The impedance matrix method is used to estimate the reflection

coefficient of the acoustic black hole. Travelling waves are observed and this device allows better understanding

of artificial cochlear mechanics.

1 Introduction
The inner ear plays a major role for pilot’s perception

and orientation. Consequently its global modeling is a great

challenge. Previous studies focused on the modeling of the

vestibular system [9] and the present paper deals with the un-

derstanding of the cochlea which is physically connected to

the vestibular system. The mammalian organ of hearing is

constituted of a fluid-filled duct partitioned with two mem-

branes. The compliance of the basilar membrane varies along

the cochlea. When it is acoustically stimulated the response

localization is frequency dependent. A wave travels from the

base to the apex of the cochlea with peak of maximum am-

plitude at a particular place. This frequency-place relation

allows sound discrimination. The organ of Corti stands on

the basilar membrane and plays the role of sensing the vibra-

tion and amplifying it. Artificial cochlea is the name given

to the devices reproducing the mechanical behavior of the

mammalian basilar membrane. Filtering mechanical vibra-

tions and converting them in electrical field without the help

of a power-consuming processing device is a very promising

future for artificial cochleas.

As the longitudinal mechanical coupling seems to be very

low, the mammalian basilar membrane is often represented in

literature with local mechanical impedance [11, 8]. Plate [10]

or membrane [12] models are classically used for the repre-

sentation of artificial cochleas. Most of artificial cochleas are

passive as no feedback elements are added [13, 14]. Vibra-

tions are measured with the help of piezoelectric patches [10]

or a laser velocimeter [10, 13, 14]. The frequency-place re-

lation is observed but under the form of standing waves. In

the inner ear, waves are attenuated before they reach the apex

because of interstitial fluid viscosity and no reflection occurs

[2]. This kind of mechanism is not easily reproducible even

with micromachining techniques [13]. Interesting results can

be obtained by increasing the fluid viscosity [12]. Here a

new method is tested to observe traveling waves on an arti-

ficial metallic support. The Acoustic Black Hole (ABH) ef-

fect takes place for flexural waves propagating toward sharp

edges [6, 4]. In the present paper, the ABH is used for the

attenuation of the wave reflection.

This paper first briefly described the assumptions used in a

classical model for an immersed width varying plate. Then

the ABH principle is described and the impedance matrices

model estimates the reflection coefficient of an ABH. Finally

the experimental setup is presented combining both effect of

varying width plate and ABH. Experimental results are ex-

posed and compared to theoretical ones previously detailed

in [3].

2 Mechanical model

2.1 Waveguide
Let consider a waveguide constituted by a rectangular

fluid-filled ducts partitioned by a solid plate (see Figure (1)).

The dynamic equation for an isotropic flexural plate is :
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Figure 1: Box model of a varying width plate immersed

between two symetric ducts.
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where W is the deflection of the plate, h(z) the thickness, ρs

the density, D the flexural rigidity defined by D = Eh(z)3/12(1−
ν2) with E the Young modulus of the plate, ν the Poisson’s

ratio. p f the fluid pressure applied on the plate. Assuming

incompressibility and no viscosity, the fluid pressure p f ver-

ifies the Laplace equation in the fluid domain:

Δp f = 0 (2)

The Wentzel-Kramers-Brillouin (WKB) method is used to

solve this problem. This semi-analytic technique describes

waveguides where the parameters are slowly varying along

the direction of propagation. It gives a good approximation

of the response with low computational costs. The applica-

tion of the WKB method is adapted from Shintaku [10] and

is more detailed in the previous paper [3].

First, the fluid pressure p f is assumed as a sum of orthogonal

modes:

p f = −iρ fω

∞∑
j=0

cosh
(
ξ j(y − H)

)
sin

(
j

2π

b(z)
x
)

Aj(z)e
∫ z

0
k(l)dleiωt

(3)

with ξ j =

√
k2 + (2 jπ/b(z))2, where b(z) is the local width of

the plate. Assuming a small variation of the magnitude term

Aj(z), the Laplace equation is verified. This expression also

allows the pressure to verify the hard wall boundary condi-

tions on ducts walls and the continuity of velocity field on

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2214



the fluid structure interface.

Deflection of the plate is also assumed under a waveform:

W(x, y, z, t) = st(x, y)We(z)e
∫ z

0
k(l)dleiωt (4)

where st(x, y) is the transversal assumed mode shape and

We(z) is the longitudinal envelope function. The dispersion

relation is obtained through substituting the expressions Eq. (3)

and Eq. (4) in Eq. (1). Admissible solutions for the wavenum-

ber k are determined with the dispersion relation. Each solu-

tion k has its coupled solution −k which means that two sim-

ilar waves propagating in opposite directions are solutions of

the system. The amplitude of vibration is obtained from the

invariance of the time-averaged Lagrangian [11]:

d

dz
∂L
∂k
= 0 (5)

This method is not developed further here and the results are

used later in the present paper.

2.2 Acoustic Black Hole
The theoretical approach considering only an incident wave

is only valid in the case of an infinite waveguide. Practically,

boundary conditions provide reflections of the incident prop-

agating waves in reflected waves. Since they have the same

wavenumber, the interferences between the incident and re-

flected waves provide standing waves. Here, the supported

idea is to use an acoustic black hole as an anechoic end to

the flexural plate. The aim is to reduce the amplitude of the

reflected wave and thus to decrease the presence of standing

waves.

The acoustic black hole consists of a power-law profile of

thickness:

h(z) = α(zt − z)2 (6)

where α = h(z0)/LABH is the ratio of the initial thickness

at the abscissa z0 to the total length of the ABH and zt is

the theoretical abscissa of the ABH’s end. When the z posi-

tion tends to zt, the flexural wave number is increasing and

tends theoretically to infinity. At the same time, the group

speed tends to zero. This means that the propagation of the

wave is stopped and it never reaches the end of the black

hole. Thus, no wave is reflected. Practically, the edge is trun-

cated and the ratio between the reflected and incident wave

is never zero. A visco-elastic material layer (see Figure 2)

is attached to the plate to keep this ratio as low as possible.

The procedure of designing an acoustic black hole is detailed

in [7, 1]. Georgiev & al. [5] described and studied analyti-

Truncated edge
Damping layer

Constant thickness plate

zztzd zez0

Figure 2: Truncated acoustic black hole with an

visco-elastic damping layer.

cally the acoustic black hole effect using the impedance ma-

trix method. This method is used here to estimate the ABH

efficiency. The reflection coefficient which corresponds to

the ratio of the reflected wave amplitude to the incident wave

amplitude is plotted on the Figure (3) using the parameters

of Table 1. It is solved for the case of a beam not surrounded

by fluid. Due to fluid mass and viscosity, it is assumed that

this coefficient is lower in the case presented here.
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Figure 3: Reflection coefficient solved for a beam in the air

with Georgiev method [6].

3 Experimental setup

3.1 Design
The acoustic black hole (ABH) efficiency is related to the

length of the decreasing thickness zone [6, 1]. Due to the

machining process, the initial thickness of the acoustic black

hole is at least of 1mm. This constraint sets the tonotopic

zone thickness. The longer the ABH is the more efficient it is.

The accuracy of the machining process also decreases with

the length. Finally, the length of the ABH is a compromise

between the machining constraint and the efficiency, know-

ing the fact that the reflection coefficient can be addition-

nally reduced by a damping layer of visco-elastic material.

The parameters of the tonotopic zone are chosen to obtain

Table 1: Acoustic black hole parameters

Parameter Symbol Value

Length of the ABH LABH 375mm

Initial thickness h(z0) 1mm

Young’s modulus E 72000MPa

Measured residual thickness h(ze) 80μm

a frequency response between 0.3kHz and 3kHz when im-

mersed in water. This frequency bandwidth is included in

the human hearing range. The range is limited to avoid the

second or higher order transverse mode to mix with the first

mode. The model (see Section (2.1)) is used to determine the

second transverse mode frequency response substituting the

corresponding function st(x, y) in the expression Eq. (4). The

procedure briefly exposed in the Figure (4) gives a width of

0.03m at the narrow start of the plate and a width of 0.05m

at the wide end. Since the plate is excited on the median

segment (see Section 3.3), it is assumed that the first mode

is mainly excited. Thus the dimensions are extended to fit

with the bandwidth [0.3 − 3kHz]. The device is as long as

permitted by the manufacturing means. The parameters are

summarized in the following table (see Table 2):
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Figure 4: Procedure for choosing the dimensions of the

varying width plate. Starting with the step a© from the lower

desired frequency Fmin the width bmax at which the first

mode will respond is obtained at the step b© . Then the step
c© with the same section, the frequency response Fmax of

the second mode is determined. Finally at the step d© the

width bmin of the section responding with the first mode to

the frequency Fmax is obtained.

Table 2: Tonotopic zone (TZ) parameters

Parameter Symbol Value

Length of the TZ Ltz 375mm

Thickness h0 1mm

Width of the narrow end bmin 22mm

Width of the wide end bmax 60mm

Young’s modulus E 72000MPa

3.2 Manufacturing

Excitation (shaker)

Tonotopic zone

Constant propagation zone

Acoustic Black Hole

Clamped edges

Measure (LASER velocimeter)

Fluid ducts (water)

Figure 5: Descriptive diagram of the experimental setup.

The acoustic black hole and the varying width plate are

machined in the same part (see Figure 5). The aluminum

vibrating plate is clamped between two steel frames which

also constitute ducts walls. The upper wall is a transparent

Plexiglas R© plate allowing velocity measurements. Most op-

erations of manufacturing necessary are derived from stan-

dard operations. The tight point is the machining of the

power-law decreasing thickness of the acoustic black hole.

A good competence in machining is needed to realize this

operation. The extension of these techniques to a life-sized

artificial cochlea device still needs to be investigated.

3.3 Measurement
The observation of traveling waves on the device requires

two more additional systems : the excitation and the mea-

surements means. While the cochlea is excited with acoustic

pressure coming through the stapes, the varying width plate

is here excited through an electromagnetic shaker. As the

plate is relatively stiff compared to the basilar membrane,

the acoustic excitation required would be inconceivable. The

varying width section is extended with a constant width sec-

tion to allow the fastening of the shaker to the plate. A

piezoelectric force sensor is inserted between the shaker and

the plate to provide a reference. The response of the vibrat-

ing plate is measured with a scanning laser vibrometer. The

laser beam is going perpendicularly to the plate and mea-

sure the velocity along the out-of-plane direction. This value

is divided by the reference in order to obtain Frequency Re-

sponse Functions (FRF). The input signal is a burst sine chirp

Figure 6: Annoted photography of the assembled

experimental setup.

on the frequency bandwidth [0 − 10kHz]. Since 6400 fre-

quency lines are used, the frequency resolution is close to

1.6Hz. The time duration of each acquisition is 1.28s and

data of each point are averaged on six acquisitions for a bet-

ter signal/noise ratio. The preliminary measurements on the

whole surface of the plate has shown a first transversal mode

dominance. Thus, the measurements are realized only on the

median segment which reduces the number of points to be

measured or increases the spatial resolution.

4 Results
The results are obtained through a series of FRF defined

for the frequencies f j and for the points of coordinates (xi, zi).

The vector of frequencies [ f j] is constituted by 6400 compo-

nents equally distributed on the bandwidth [0 − 10kHz]. For

each measured point P(xi, zi), and each frequency f j the FRF

is given as a complex number H(P(xi, zi), f j). Complex val-

ues are needed for the study of travelling waves as the latter

can be considered as complex modes. The entire data set

consists of the terms H(P(xi, zi), f j) which are transformed

hereafter for a better lisibility.

4.1 Data processing
Using the data for a particular frequency fm and the whole

set of points, the Operating Deflection Shape (ODS) is ob-

tained by taking the real part of H(P(xi, zi), fm). This could

also provides animated ODS, multiplying by a rotating term

eiωt. Animations are useful tools but the envelope functions

are a better representation of the results. Envelope functions

can be obtained by taking |H(P(xi, zi), fm)|. An example is
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given on Figure (7) for the frequency fm = 5706Hz and for

the points P(0, zi) located along the median segment of the

plate. The general feature of the envelope curve is well cor-
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Figure 7: Envelope function of the plate immersed in the air,

measured for fm = 5706Hz.

related with the model (see Section 2.1) including a reflection

coefficent R = 0.3. The higher peaks are located in the same

area for model and experimental results. The decreasing am-

plitude of peaks after the shows the same trend as well. How-

ever, the peaks are not superposed and more comparative

plots are needed. The unwrapped angle ∠(H(P(0, zi), fm)) is

used in order to obtained the phase function of the travelling

wave. The comparison between the model and the exper-

imental results for the same frequency fm is shown on the

Figure (8). This curve shows three important features :
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Figure 8: Phase function of the plate immersed in the air,

measured for fm = 5706Hz.

• The phase of vibration is varying and depends on the

position along the waveguide. The ABH allows this

result as total reflection would provide standing waves

with a constant phase. Hence, travelling waves are ob-

served.

• The position of the breakdown in the phase slope is

easily observable at the same location for the model

and the experimental results. This location corresponds

to the location of the highest peak and it is related to

the excitation frequency. The clear identification of

this location proves that the experimental results are

workable.

• The value of the slope itself is closed to the one from

the model. It determines the wavelength after the peak

and the number of secondary peaks.

These results are also found by using the wavenumber curves

which are plotted on the Figure (9), taking the derivative of

the previous phase curves along the position. A strong varia-

tion of the wavenumber is located at the abscissa correspond-

ing to the peaks of amplitude and the phase breakdowns.

Before this point, the wavenumber is close to zero which

means an almost in-phase vibration. After this point, the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−100

0

100

200

Position along the waveguide [m]

W
av

en
um

be
r 

[m
−

1 ]

model
experimental result

Figure 9: Wavenumber of the plate immersed in the air,

measured for fm = 5706Hz.

wavenumber reaches an asymptotic value which is the same

for the model and the experimental results. As the derivative

is very sensitive to the measurements noise, perturbations of

the experimental curve is oscillating around this value. The

three previous figures show that the experimental results are

closed from the model at a given frequency. The frequency

fm = 5706Hz is arbitrary chosen but similar results are ob-

tained for others frequencies.

4.2 Tonotopy
Since the objective of this study is to show a tonotopy on

the varying width plate, these data are used to plot tonotopic

maps. For each frequency, the envelope function (See Fig-

ure (7)) is normalized and plotted on a color map. The blue

color corresponds to no vibration zones and the red color to

the zones of maximum vibration. The relation between the

frequency and the location of vibration clearly appears. A

similar relation is also extracted from the model taking the

location of the maximum response point for each frequency.

Model and experimental results are compared on Figure (10)

for the plate in the air and on Figure (11) for the plate im-

mersed in water. For the case in the air, the experimental

Figure 10: Experimental tonotopic map obtained by taking

the normalized response for each frequency. Map for the

plate immersed in the air.

results show a good correspondence with the model. The

Zone of Maximum Vibration (ZMV), represented with the

red color on Figure (10), is located around the dashed line

corresponding to the model. The area under the ZMV is

almost uniformly colored and the magnitude of vibration is

close to zero. This makes the identification of the ZMV even

clearer. The area above the ZMV presents some secondary
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peaks but their magnitude is clearly smaller than in the ZMV,

thanks to the effect of the ABH. For a vibration in a given

location, the excitation frequency is identified which is the

objective of this device. Horizontal lines appear for a loca-

tion close from 0.3m. These are due to clamping defaults.

The tonotopic map for the plate immersed in water is plot-

Figure 11: Experimental tonotopic map obtained by taking

the normalized response for each frequency. Map for the

plate immersed in water.

ted following the same method on Figure (11). The ZMV is

shifted toward lower frequencies due to the inertia effect of

water. The general form of the ZMV is identified. Above 2.5
kHz, the experimental results are comparable to the model.

The secondary peaks are visible but significantly attenuated.

For lower frequencies, due to interference of frame modes in

the same frequency bandwidth, several peaks appear and the

relation between location and frequency is not clearly visible.

Modifications of the frame are under investigation in order to

solve this problem.

5 Conclusion
The device presented here allows the observation of trav-

elling waves. Due to the variation of waveguide properties,

the travelling waves show a peak of maximum amplitude.

The provided relation between frequency and location of the

maximum vibration peak is called the tonotopy. This con-

cept allows sound frequency selectivity in the inner ear. The

experimental results presented here show a good correlation

with the model. The acoustic black hole used as an anechoic

end improves the quality of measurements. The device al-

lows a better understanding of inner ear mechanics and it lays

the foundations of an acoustic sensor concept.

However some aspects of this study are still under investiga-

tion. The frame stabilization and the study of the immersed

acoustic black hole will be the next steps of this work.
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