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Transformation elasticity, by analogy with transformation acoustics and optics, converts material domains without
altering wave properties, thereby enabling cloaking and related effects. By noting the similarity between
transformation elasticity and the theory of incremental motion superimposed on finite pre-strain it is shown that
the constitutive parameters of transformation elasticity correspond to the density and moduli of small-on-large
theory. We first consider antiplane wave cloaks, generated from neo-Hookean hyperelastic media before going
on to consider the more general theory of elastodynamics. In the latter, the formal equivalence indicates that
transformation elasticity can be achieved by selecting a particular finite (hyperelastic) strain energy function. The
uniquely defined form for isotropic elasticity is semilinear strain energy. The associated elastic transformation is
restricted by the requirement of statically equilibrated pre-stress. This constraint can be cast as trF = constant,
subject to symmetry constraints, and its consequences are explored both analytically and through numerical
examples of cloaking of anti-plane and in-plane wave motion.

1 Introduction

The principle underlying cloaking theory is the
transformation method whereby the material properties of
the cloak are defined by a (singular) spatial transformation.
For elastodynamics, Milton et al. [1] concluded that the
transformed materials are described by the Willis model,
involving coupling between stress and velocity, in addition
to anisotropic inertia. For a restricted transformation,
Brun et al. [2] found transformed material properties with
isotropic inertia and elastic behavior of Cosserat type, i.e.
with properties that are the same as those of “standard”
linear elasticity except that the moduli do not satisfy the
minor symmetry, i.e. C∗jikl � C∗i jkl.

The transformed elastodynamic constitutive parameters
may be characterized through their dependence on (i) the
transformation (mapping function) and (ii) the relation
between the displacement fields in the two descriptions,
represented by matrices: F, the deformation gradient matrix,
and A, respectively. It was shown in [3] that requiring stress
to be symmetric implies A = F and that the material must be
of Willis form, as in [1]. Setting A = I, on the other hand,
results in Cosserat materials with non-symmetric stress but
isotropic density, as found by Brun et al. [2].

In this paper we consider a class of materials displaying
non-symmetric stress of the type necessary to achieve
elastodynamic cloaking by taking advantage of the
similarities between transformation elasticity and small-on-
large motion in the presence of finite pre-strain [4]. Such an
approach has already been shown to be successful; by using
an incompressible neo-Hookean material with a radially
symmetric cylindrical pre-strain, Parnell [5] showed that
the resulting small-on-large equations are identically those
required for cloaking of the horizontally polarized shear (SH
or antiplane) wave motion. In [5] the pre-stress affected the
entire elastic domain however and therefore its influence
was felt by both the source and receiver. In this letter we
show how this theory may be adapted in order to create a
finite cloak by means of an axial stretch. We then go on to
consider the general elastodynamic transformation problem,
including but not limited to SH motion.

2 Finite cloaks for antiplane waves

As noted in [2], a special case for elastodynamics
is the antiplane elastic wave problem, where cloaking
can readily be achieved from a cylindrical region (using
a cylindrical cloak) in two dimensions by virtue of the
duality between antiplane waves and acoustics in this

dimension. Consider an unbounded homogeneous elastic
material with shear modulus μ0 and density ρ0 and introduce
a Cartesian coordinate system (X, Y, Z) and cylindrical
polar coordinate system (R,Θ, Z) with some common
origin O. Planar variables are related in the usual manner,
X = R cosΘ, Y = R sinΘ. Suppose that there is a time-
harmonic line source, polarized in the Z direction and
located at (R0,Θ0), with circular frequency ω and amplitude
C (which is a force per unit length in the Z direction).
This generates antiplane elastic waves with the only non-
zero displacement component in the Z direction of the
form U = �[W(X, Y) exp(−iωt)]. The displacement W is
governed by

∇X · (μ0∇XW) + ρ0ω
2W = Cδ(X − X0), (1)

where ∇X is the gradient operation in the “untransformed”
frame, X = (X, Y) and X0 = (X0, Y0).

The assumed mapping for a cloak for antiplane waves (cf.
acoustics) expressed in plane cylindrical polar coordinates,
takes the form

r = g(R), θ = Θ, z = Z, for 0 ≤ R ≤ R2, (2)

and the identity mapping for all R > R2 for some chosen
monotonically increasing function g(R) with g(0) ≡ r1 ∈

[0,R2], g(R2) = R2 ∈ R such that R2 < R0, i.e. the line source
remains outside the cloaking region. The cloaking region is
thus defined by r ∈ [r1, r2] where r2 = R2. We use upper and
lower case variables for the untransformed and transformed
problems respectively. Under this mapping the form of the
governing equation (1) remains unchanged for R = r > R2,
whereas for 0 ≤ R ≤ R2, corresponding to the transformed
domain r1 ≤ r ≤ R2, the transformed equation takes the form
(in transformed cylindrical polar coordinates r, θ = Θ)

1
r
∂

∂r

(
rμr(r)

∂w
∂r

)
+
μθ(r)

r2

∂2w
∂θ2
+ d(r)ω2w = 0 (3)

where (see eqs. (26), (27) in [3])

μr(r) =
μ20

μθ(r)
= μ0

R
r

d g
d R
, d(r) = ρ0

R
r

(
d g
d R

)−1
. (4)

Hence, both the shear modulus and density must be
inhomogeneous and the shear modulus must be anisotropic.
Material properties of this form cannot be constructed
exactly since the shear modulus μθ becomes unbounded
as r → r1 (the inner boundary of the cloak). In this limit
the density behaves as d = (pcr1)−1ρ0R2−p + . . . where
p, c > 0 define the mapping in the vicinity of the inner
boundary according to r = r1 + cRp + . . . as R → 0. In
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practice of course approximations are required as described
in e.g. [6, 7, 8]. Note that, as expected [3], the total mass is
conserved since, regardless of the mapping, the integral of
the density d(r) over r ∈ [r1, r2] is πR2

2ρ0.
In [5] a new method to generate elastic cloaks was

proposed which used the notion of nonlinear pre-stress. That
this was possible was due to the fact that the antiplane wave
field scattered from a cylindrical cavity is invariant under
pre-stress for an incompressible neo-Hookean material.
Scattering coefficients in the deformed configuration depend
only on the initial cavity radius R1 and therefore provided
that this is small compared with the incident wavelength,
scattering from the inflated cavity of radius r1 will be
negligible regardless of the relative size of r1 and the
incident wavelength. Therefore we can conclude that an
object placed inside the inflated cavity region would be
near-invisible (i.e. cloaked) upon choosing R1 appropriately.
In [5] the pre-stress affected the entire elastic domain ,i.e.
its influence was felt by both the source and receiver. Let us
now show how we may adapt this theory in order to create
a finite cloak by means of an axial stretch. Full details are
given in [9].

With reference to Fig. 1, let us consider an elastic
material within which is located a cylindrical cavity of
radius R2. Let us assume that the density of this medium is
ρ0 and its axial shear modulus (corresponding to shearing
on planes parallel to the axis of the cylindrical cavity) is
μ0. Additionally we take a cylindrical annulus of isotropic
incompressible neo-Hookean material with associated shear
modulus μ and density ρ and with inner and outer radii R1

and R2 respectively with R1 	 R2. The exact nature of
this latter relationship will be described shortly. We shall
consider deformations of the cylindrical annulus in order that
it can act as an elastodynamic cloak to incoming antiplane
elastic waves. We deform the material so that its inner
radius is significantly increased (to r1) but its outer radius R2

remains unchanged. The deformed cylindrical annulus can
then slot into the existing cylindrical cavity region within the
unbounded (unstressed) domain. We choose μ and ρ so that
subsequent waves satisfy the necessary continuity conditions
on r = R2.

(a) (b) (c)

Figure 1: The incompressible neo-Hookean cylindrical
annulus in (b) is pre-stressed as depicted in (c). This annulus
then creates a cloak when slotted into a cylindrical cavity in

an unbounded elastic medium (as illustrated in (a)).

The constitutive behaviour of an incompressible neo-
Hookean material is described by the strain energy function
[10]

W =
μ

2
(λ2r + λ

2
θ + λ

2
z − 3) (5)

where λ j, j = r, θ, z are the radial, azimuthal and axial
principal stretches of the large deformation to ensue.
We consider the initial deformation of the cylindrical
annulus domain as depicted in Fig. 1. Since the material
is incompressible, the deformation is induced either by
applying a uniform axial stretch L or a radial pressure
difference po − pi where po and pi denote the pressures
applied to the outer and inner face of the cylindrical annulus
respectively. The ensuing deformation is described via the
relations

R = R(r), Θ = θ, Z = z/L, (6)

where (R,Θ, Z) and (r, θ, z) are cylindrical polar coordinates
in the undeformed and deformed configurations. Note the
convention introduced in (6), i.e. that upper case variables
correspond to the undeformed configuration whilst lower
case corresponds to the deformed configuration. This
is analogous to the notation used for untransformed and
transformed configurations in (2).

The principal stretches for this deformation are

λr =
d r
d R
=

1
R′(r)

, λθ =
r

R(r)
, λz = L. (7)

For an incompressible material λrλθλz = 1, implying

R(r) =
√

L(r2 + M), (8)

where M = R2
2(L
−1−1) is a constant determined by imposing

that the outer wall of the cylindrical annulus remains fixed,
i.e. R(R2) = R2. The deformation (8) is easily inverted to
obtain r(R). Given incompressibility and the fixed outer
wall of the annulus, in order to induce this deformation
we may either (i) prescribe the axial stretch L which then
determines the deformed inner radius r1 and the radial
pressure difference required to maintain the deformation
or (ii) prescribe the radial pressure difference which then
determines the deformed inner radius r1 and the axial stretch
L.

We shall discuss the radial pressure difference shortly
but either way we can obtain L and thus feed this into (8).
Imposing the requirement that R(r1) = R1 and using the form
of M gives rise to the useful relation

L =
R2

2 − R2
1

R2
2 − r2

1

. (9)

The Cauchy stress for an incompressible material is [10]

T = F
∂W

∂F
+ QI, (10)

where W is the neo-Hookean strain energy function
introduced in (5), F is the deformation gradient, I is the
identity tensor and Q is the scalar Lagrange multiplier
associated with the incompressibility constraint.

Only diagonal components of the Cauchy stress are non-
zero, being given by (no sum on the indices)

T j j = μ j(r) + Q (11)

for j = r, θ, z, where

μr(r) =
μ2

L2

1
μθ(r)

=
μ

L

(
r2 + M

r2

)
, μz = L2μ. (12)
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The second and third of the static equations of equilibrium
Div T = 0 (where Div signifies the divergence operator in
the deformed configuration) merely yield Q = Q(r). The
remaining equation

∂Trr

∂r
+

1
r
(Trr − Tθθ) = 0, (13)

can be integrated using (11)-(12) to obtain Q(r). Writing
Trr

∣∣∣
r=R2
= −po, Trr

∣∣∣
r=r1
= −pi we find

L(pi − po)
μ

=
1
2L

⎛⎜⎜⎜⎜⎝1 − R2
1

r2
1

⎞⎟⎟⎟⎟⎠ + log

(
r1

R1

)
. (14)

Given L and thus r1 via (9), this equation prescribes the
required pressure difference.

Now assume that the cylindrical annulus has been
pre-stressed in an appropriate manner and slotted into the
unbounded elastic material with perfect bonding at r = R2.
We consider wave propagation in this medium given a
time-harmonic antiplane line source located at (R0,Θ0) with
R0 > R2. In r > R2 the antiplane wave with corresponding
displacement which we shall denote by w(r, θ), is again
governed by (1). In the region r1 ≤ r ≤ R2, the wave
satisfies a different equation since this annulus region has
been pre-stressed according to the deformation (6) and (8).
We can obtain the governing equation using the theory of
small-on-large [10]. It was shown in [5] that the wave in
this region satisfies (3) but now where μr(r) and μθ(r) are
defined in (12) and d(r) = ρ, and note that we have made the
necessary corrections in order to include the axial stretch L
which was not considered in [5]. Note in particular that the
density is homogeneous inside the cloak region.

In order to solve the scattering problem let us now
introduce the identity mapping for r > R2 and

R2 = L(r2 + M), Θ = θ, for r1 ≤ r ≤ R2 (15)

which corresponds to the actual physical deformation
(8). Finally define W(R,Θ) = w(r(R), θ(Θ)). It is then
straightforward to show that the equation governing wave
propagation in the entire domain R ≥ R1 is (1), provided
that we choose μ = Lμ0 and ρ = Lρ0. These relations
ensure that the wavenumbers in the exterior and cloak
regions are the same and they also maintain continuity of
traction on R = R2. Furthermore since (15) corresponds
to the actual deformation, the inner radius r1 maps back to
R1. Therefore with the appropriate choice of cloak material
properties, the scattering problem in the undeformed and
deformed configurations are equivalent. We can therefore
solve the equation in the undeformed configuration and
then map back to the deformed configuration to find the
physical solution. Decomposing the solution into incident
and scattered parts W = Wi +Ws, we have Wi =

C
4iμ0

H0(KS )

where we have defined the wavenumber K via K2 = ρ0ω
2/μ0

and S =
√

(X − X0)2 + (Y − Y0)2. Here Hn = H(1)
n is the

Hankel function of the first kind of order n. The scattered
field is written in the form [5]

Ws(R) =
∞∑

n=−∞

(−i)nanHn(KR)ein(Θ−Θ0). (16)

Satisfaction of the traction free boundary condition on
R = R1 gives an. We want the wave field with respect to

the deformed configuration, so we map back in order to
find w = wi + ws. The incident wave is most conveniently
determined by using Graf’s addition theorem in order to
distinguish between the regions r < R0 and r > R0, as was
described in [5]. The incident and scattered fields are then,
respectively,

wi(r) =
C

4iμ0

∞∑
n=−∞

ein(θ−θ0)Yi(r) (17)

where

Yi(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Hn(KR0)Jn(K

√
L(r2 + M)), r1 ≤ r < R2,

Hn(KR0)Jn(Kr), R2 ≤ r < R0,

Hn(Kr)Jn(KR0), r > R0,

(18)

and

ws(r) = −
C

4iμ0

∞∑
n=−∞

ein(θ−θ0)
J′n(KR1)

H′n(KR1)
Hn(KR0)Ys(r) (19)

where

Ys(r) =

⎧⎪⎪⎨⎪⎪⎩
Hn

(
K

√
L(r2 + M)

)
, r1 ≤ r < R2,

Hn (Kr) , r ≥ R2.
(20)

The key to cloaking is to ensure that the scattered field
is small compared with the incident field, i.e. an 	 1.
Note from (20) that an are solely dependent on the initial
annulus inner radius R1 (and source distance R0) but are
independent of the deformed inner radius r1. Therefore
we must choose R1 such that KR1 	 1 which will ensure
negligible scattering. We illustrate with some examples in
Fig. 2, showing that the “pre-stress” cloak appears to work
well.

Let us now move onto a more general theory for
compressible hyperelastic materials and the general
elastodynamic case.

3 A general hyperelastic cloaking
theory

It was fortuitous in the above theory that an incompressible
neo-Hookean material gave us exactly the correct
incremental behaviour under pre-stress in order to generate
cloaks for antiplane waves. This prompts the question, for
general elastodynamics in two and three dimensions, does
there exist a hyperelastic material that can act similarly? In
order to answer this question we must consider the formal
equivalence of transformation elasticity and the equations of
small on large.

Thus transformation elasticity take the Navier-Lamé
equations

∂

∂Xi

⎛⎜⎜⎜⎜⎝C0
i jk	

∂u0
	

∂Xk

⎞⎟⎟⎟⎟⎠ + ρ0ω2u0
j = 0 (21)

for some homogeneous material properties C0
i jk	 and ρ0

and applies the mapping x = χ0(X) so that the governing
equations become

∂

∂xi

(
C∗i jk	

∂u∗
	

∂xk

)
+ ρ∗ω

2u∗j = 0 (22)
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Figure 2: Cloaking of antiplane shear waves. Line source is
located at Kr = KR0 = 8π, Θ0 = 0, shown as a white circle.

Upper left: A region of (nondimensionalized) radius
Ka = 2π is cloaked using a classic linear elastic cloak
g(R) = r1 + R

(R2−r1
R2

)
in 2π ≤ Kr ≤ 4π. Upper right:

Scattering from a cavity of radius KA = 2π/20 in an
unstressed medium. Lower left: A “pre-stress” cloak in

2π ≤ Kr ≤ 4π generated from an annulus with initial inner
radius KR1 = 2π/20. Lower right: Scattering from a cavity
with radius KA = 2π in an unstressed medium. Scattering

and the shadow region presence in the latter is significant, as
compared with that for an equivalent sized cavity for the

“pre-stress” cloak.

where u∗(x) = u0(X(x)), ρ∗ = ρ0/J0,C∗i jk	 = F0
imF0

knC0
m jn	/J0

and F0 = Gradχ0, J0 = DetF0. Thus for cloaking, as in the
antiplane case considered above, a singular mapping χ0 can
be chosen such that the origin is mapped to a finite radius say
r1 whilst some radius further out, say R2 remains fixed. Thus
the cloak is the region r ∈ [r1, r2] with r2 = R2. However we
see that in general C∗i jk	 � C∗i j	k. Thus the “cloak” is required
to be an inhomogeneous Cosserat-type material.

Whereas the above refers to an “imaginary” transformation
that allows the determination of the cloak properties, let us
now consider an actual physical deformation (pre-stress) of
a hyperelastic material with initial density ρ̄ and constitutive
behaviour governed by strain energy function (SEF)W. As
in [5] this is taken to be a pre-stress such that an initially
small cavity with radius R1 is inflated to a cavity with radius
r1 > R1. The outer cloak radius is R2. The deformation
gradient is F = Gradχ where x = χ(X) and the small-on-
large equations governing wave propagation through this
pre-stress material are

∂

∂xi

(
Mi jk	

∂u	
∂xk

)
+ ρω2u j = 0 (23)

where ρ = ρ̄/J and Mi jk	 = (1/J)FimFkn∂
2W/∂F jm∂F	n

with J = DetF. Ensuring the transformed and small-on-
large equations are equivalent requires u = u∗, ρ = ρ∗ and
Mi jk	 = C∗i jk	. It transpires that this gives a restriction on the
SEF which for isotropic materials is required to be the so-
called semi-linear SEF:W = (λ̄/2)(tr(U − I))2 + μ̄tr(U − I)2

where U2 = FT F and λ̄, μ̄ are the isotropic elastic moduli of
the hyperelastic material. The deformation r = r(R) can be
determined explicitly but the invariance places the restriction
that r1/R1 < d/(d − 1) where d is the dimension. Thus in
2D, for the examples that follow we are restricted by r1 <

2R1. We take the upper limit so that we have an “optimal”
hyperelastic cloak of semilinear form.

Considering examples in 2D and defining the shear
wavenumber via K2

s = ω
2ρ̄/μ̄, in Figure 3 we illustrate

reduction in SH wave scattering from a cylindrical region
by using a cloak generated by pre-stress, where a source is
located at KsR0 = 8π,Θ0 = 0. Top left image shows the
scattered field from a cavity of (scaled) radius Ksr1 = 2π
whereas the top right is with the presence of the cloak. In
particular note that the scattered field is far more isotropic
than without the cloak. The plots underneath show the
scattering cross-section (SCS) without (solid) and with
(dashed) a cloak (left) and percentage reduction in SCS
(right). Although the effectiveness of the cloak is reduced
by the restriction r1 < 2R1, we see a significant reduction in
scattering by employing the cloak. Similar effects are seen
in the in-plane compressional-shear (P/SV) elastodynamic
problem as illustrated in figure 4 where we have defined the
compressional wavenumber K2

p = ω
2ρ̄/(λ̄ + 2μ̄).

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6

20

40

60

80

100
SCS %r

Ksr1Ksr1

Figure 3: Top: Illustrating the scattered SH wave field of a
cavity without (left) and with (right) a cloak. Bottom:
Scattering cross-section (left) without (solid) and with

(dashed) a cloak and percentage reduction in SCS (right)
plotted against scaled cavity radius Ksr1 where Ks is the

shear wavenumber.

4 Conclusion

In conclusion, we have shown how a finite cloak can
be generated for elastic waves by employing nonlinear pre-
stress of a hyperelastic material.

In the first instance we illustrated how an incompressible
neo-Hookean hyperelastic material could be used in order
to cloak a region from antiplane waves. In this instance
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Figure 4: Scattering cross-section (left) without (solid) and
with (dashed) a cloak and percentage reduction in SCS

(right) plotted against scaled cavity radius Kpr1 where Kp is
the compressional wavenumber. From top to bottom, the

Poisson ratio of the medium is ν = 1/3, 7/15 and 49/99. In
general although perfect cloaking is not achieved, a

significant reduction in scattering is achieved by using a
hyperelastic cloak especially at low frequencies. Note that

for ν = 49/99 the local maximum in scattering cross section
results in a narrow range of values of Kpr1 where the cloak

increases scattering.

the performance of the cloak is limited only by the size of
the initial radius of the cylindrical cavity inside the annulus
region. The anisotropic, inhomogeneous material moduli in
the cloaking region, defined by (12), are induced naturally
by the pre-stress and therefore exotic metamaterials are
not required. Dispersive effects, which naturally arise in
metamaterials due to their inherent inhomogeneity at some
length scale, will not be present in the pre-stress context and
we also note that the density of the cloak is homogeneous.
In order to achieve the required pre-stress, a radial pressure
difference is required across the cylindrical annulus. It would
be inconvenient to prescribe po on the outer face. However,
since we only need a pressure difference we can prescribe
pi with po = 0, ensuring the prescribed deformation and
eliminating this difficulty. The incompressible neo-Hookean
model is an approximation to reality, holding in general for
rubber-like materials and moderate deformations. If the
material is not neo-Hookean, invariance of the scattering
coefficients is not guaranteed in general and therefore similar
exact results will not hold. However it would be of interest
to ascertain whether scattering from inflated cavities in other
hyperelastic pre-stressed media is still significantly reduced
as compared with an equivalent sized cavity in an unstressed
medium.

We then pursued an equivalence between the full
transformation elastodynamic equations and those of small-
on-large. Specifically, the semilinear strain energy function
uniquely yields the correct incremental moduli required
for transformation of isotropic elasticity. The connection
between the two theories is that the transformation equals

the finite deformation. The fact that the pre-stress must be
in a state of equilibrium places a constraint on the type of
transformations allowed. Specifically, they are limited by
the condition that r1 < 2R1 in 2D. This implies that the
actual size of a cylindrical target can be increased in area
by a factor of 4, its radius by factor of two, without any
change to the scattering cross-section. The restricted form
of the transformation is not surprising considering the fact
that the theory can simultaneously control more than one
wave type, in contrast to acoustics. It was shown that a
significant reduction in the scattering cross-section from the
cavity occurs, as compared with scattering from a cavity of
the same radius in an undeformed medium. This effect is
particularly striking at low frequencies and for small Poisson
ratios.

The equivalence of transformation elasticity and small-
on-large theory provides a unique and potentially realizable
solution, although with a limited range of transformations
allowed.
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