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Measurement of very low frequency sources is rather difficult to perform because very few testing rooms remain

anechoic in the 10-100 Hz frequency range. To overcome this problem, the field separation method has been

proposed a few years ago. This technique consists in measuring two acoustic quantities on a closed surface sur-

rounding the tested source. To take advantages of spherical harmonic functions, the measurement surface should

be spherical. The acoustic quantities can either be acoustic pressure measured on two concentric (half-) spheres or

pressure and velocity measured on a (half-) sphere. Then, by using spherical harmonic expansions, contribution

from the subwoofer is separated from reflections on the walls of the testing rooms to recover half or free space

conditions. This paper focuses on the choice of the measured data set. Simulations are performed using p-p and p-v

data approaches. The effect of microphone spacing for the double pressure layer formulation will be investigated.

Finally, measurement results obtained on a subwoofer will be shown to highlight simulation results.

1 Introduction
Measurement of low frequency sources like subwoofers

is not an easy task. In this frequency range, very few dead

rooms remain anechoic. Different solutions were proposed

for the assessment of the frequency response: outdoor mea-

surements, windowing of measured signals, pressure mea-

surements in the near-field (or even inside the box) of the

tested source. However, these solutions have drawbacks and

cannot always be used. An alternative method consists in

measuring two acoustic fields on closed surfaces surround-

ing the tested source. Knowing these two data sets allows the

separation of the outgoing field coming from the subwoofer

from the incoming field radiated by the other sources or re-

flected by walls of the testing room. This approach has been

first proposed by Weinreich et al.[1] for the measurement of

a violin. It has later been applied to the measurement of sub-

woofers in a semi anechoic room [2] or in a usual room [3].

For the results reported in these two last papers, the separa-

tion process was performed with pressure and velocity data

(p-v approach). However, separation can also be calculated

with a set of two pressure fields measured on two concen-

tric sphere (p-p approach). This paper focuses on these two

possibilities and tries to evaluate which one is the the most

efficient in the 10 − 400 Hz frequency range.

2 Theory
A brief summary of the p-p and p-v approaches will be

given here, for a more detailed description please consult ref-

erence [4]. Consider three concentric spheres of respective

radii r1 to r3, where r2 =
r1+r3

2
. The chosen time dependence

is given by e jωt and will be omitted throughout the paper.

2.1 p-v approach
Acoustic pressure and velocity fields are measured on the

sphere of radius r2 and then expanded on spherical harmonic

functions:

p(r2, θ, φ) =

∞∑
n=0

n∑
m=−n

αnmYm
n (θ, φ) (1)

v(r2, θ, φ) =

∞∑
n=0

n∑
m=−n

βnmYm
n (θ, φ) (2)

where θ is the colatitude, φ is the longitude, and Ym
n are the

normalized spherical harmonic functions. The αmn and βmn

coefficients can be obtained from measurement data by ma-

trix inversion or by expansion using orthonormal properties

of Ym
n . This formulation can be rewritten in terms of outgoing

and standing waves:

p(a2, θ, φ) =

∞∑
n=0

n∑
m=−n

[amnh(2)
n (ka2) + bmn jn(ka2)]

Ym
n (θ, φ) (3)

v(a2, θ, φ) =
− j
ρ0c

∞∑
n=0

n∑
m=−n

[amnh
′(2)
n (ka2) + bmn j

′
n(ka2)]

Ym
n (θ, φ) (4)

The spherical Bessel functions jn represent the standing wave

field while the spherical Hankel functions h(2)
n represent the

outgoing field. The amn coefficients are given by:

amn = jk2a2
2[ jρ0cβmn jn(ka2) − αmn j

′
n(ka2)], (5)

which allow the calculation of the outgoing field. This latter

represents the field that would have been radiated under free

field conditions.

2.2 p-p approach
In the case where acoustic pressure is measured on the

spheres of radius r1 and r3, expansions of the two fields on

spherical harmonic functions are given by:

p(a1, θ, φ) =

∞∑
n=0

n∑
m=−n

γnmYm
n (θ, φ) (6)

p(a3, θ, φ) =

∞∑
n=0

n∑
m=−n

δnmYm
n (θ, φ) (7)

Pressure fields can also be written in terms of outgoing and

standing waves:

p(a1, θ, φ) =

∞∑
n=0

n∑
m=−n

(cmnh(2)
n (ka1) + dmn jn(ka1))Ym

n (θ, φ) (8)

p(a3, θ, φ) =

∞∑
n=0

n∑
m=−n

(cmnh(2)
n (ka3) + dmn jn(ka3))Ym

n (θ, φ) (9)

The processing of the outgoing field can be performed by

using:

cmn =
jn(ka1)δmn − jn(ka3)γmn

Δ
, (10)

with: Δ = jn(ka1)h(2)
n (ka2)− jn(ka2)h(2)

n (ka1). Please note that

Δ can be null, however when dealing with the measurement

of subwoofer, the first zero is out the frequency band of in-

terest. For instance, with a1 = 0.6 m and a3 = 0.7 m, the first

zero is obtained for f > 1700 Hz

When the spacing d = a3 − a1 between the two spheres is
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small compared to the wavelength , Δ can be expanded in

Taylor series. By using the Wronskian relation for spherical

bessel functions, one can show that Δ ≈ jd
ka2

1

thus giving an

simplified solution for cmn:

cmn =
ka2

1

jd
[ jn(ka1)δmn − jn(ka3)γmn], (11)

2.3 Practical implementation
To make the measurements easier, the tested subwoofer

is placed on the rigid ground of the testing room. Then, mea-

sured data are collected on concentric half-spheres. Please

note that in this case, the separation process will only remove

reflections from walls and ceiling thus giving half-space con-

ditions. The mathematical implication of this measurement

geometry is that expansions can be performed only on even

spherical harmonics to respect the problem symmetry (thus

only even values of m + n are used).

Another practical consideration is the finite number of mea-

surement points which limits the expansion maximum or-

der N. When using even spherical harmonic functions, each

hemisphere should be discretized with at least
∑N

i=0(i + 1)

points.

Note that it is possible to compute the p-v approach from

double layer pressure measurements if a3−a1 is much smaller

that the wavelength. In this case, the mean pressure is used

and approximation of Euler’s equation by finite difference is

performed to calculate velocity.

3 Simulations
Tests are performed using half-spheres with 36 probe po-

sitions. The placing of the measurement points is shown on

Figure 1. With an optimal placing of the 36 measurement

points, expansions can be performed up to order N = 7. With

the regular mesh used here having more than required points

near the pole, N decreases to 5.

The following radii will be used : a1 = 0.6 or 0.625 m,

a2 = 0.65 m and a3 = 0.7 or 0.675 m. This configuration

gives a maximum studying frequency fm = cN
2πa3
� 388 Hz .

A first test has been processed with a first monopole lo-
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Figure 1: Placing of the probes on a measurement surface.

cated inside the half-spheres at coordinates (0.1 m, 0 m, 0.07

m) while the second monopole lies outside the measurement

surfaces at coordinates (1 m, 0 m, 1 m). The separation pro-

cess is applied to the simulated data using four different al-

gorithms:

• The p-v implementation (pv) based on pressure and

velocity fields simulated for radius a2 (Eq. 5).

• The p-p implementation (pp) based on pressure fields

simulated for radii a1 and a3 (Eq. 10).

• The Taylor series approximation of the p-p implemen-

tation (ppa) using (Eq. 11).

• The finite difference implementation (pva), for which

pressure and velocity fields are processed from pres-

sure measurements on radii a1 and a3 by using first

order approximations.

A cumulative error criteria E is calculated between the esti-

mated pressure obtained from separation pe
i (a2, θ, φ) and the

theoretical pressure pt
i(a2, θ, φ) on the measurement points of

the median half-sphere:

E =

√√√√∑36
i=1

∣∣∣pe
i (a2, θ, φ) − pt

i(a2, θ, φ)
∣∣∣2∑36

i=1

∣∣∣pt
i((a2, θ, φ)

∣∣∣2 . (12)

Results are plotted in Figure 2. One can see that, when pres-

sure and velocities are accurately known, there is no differ-

ence between the pp and pv approaches, the two curves are

superimposed. E is very low below fm and increases sharply

when approaching fm. The error rate is slightly higher for

pva due to the approximations on pressure and velocity on

the median half-sphere. E is much larger for ppa, and sur-

prisingly the curve does merge with pp values at very low

frequency. This can be explained by the fact that spherical

Hankel function grows very fast, thus first order approxima-

tion is not sufficient.

To study the effect of noise on the separation process, ran-
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Figure 2: Relative errors for the four separation algorithms

for d = 10 cm

dom errors have been added to the simulated data on the

measurement half-spheres. Amplitude has been blurred with
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a noise of maximum amplitude equal to 7% of the maxi-

mum theoretical pressure while normal distributed phase er-

rors with a standard deviation of 0.1 degrees have been added

to the simulated data. Results for 50 averaged acquisitions

are shown in Figure 3. Error rate for the pv method shows a

moderate increase compared to the previous case but remains

below 1% up to 300 Hz. At low frequencies error rates for pp

and pva are very close (about 2− 3 %), at higher frequencies

Epp merges with Epv.
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Figure 3: Relative errors for the four separation algorithms

with added noise for d = 10 cm

Simulations without and with added noise have also been

processed for d = 5 cm. Results are shown in Figures 4

and 5. One can see that pp, pv and pva have very similar

error rates when no noise is applied do the simulated data.

With a small microphone spacing, finite approximations of

pva are very close to actual pressures and velocities on the

median half-sphere. Error rate for ppa remains high even in

this favourable case. When noise is added to the amplitude

and phase of the measured data (maximum values of 10 %

of the maximum pressure and 0.5 degrees), Epp and Epva are

very close in the tested frequency band. The pv method have

the lowest error rate < 2 % up to 300 Hz.
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Figure 4: Relative errors for the four separation algorithms

for d = 5 cm.
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Figure 5: Relative errors for the four separation algorithms

with added noise for d = 5 cm.

4 Measurements
A closed box subwoofer has been built with thin walls to

highlight the impact of the enclosure vibrations. The box is

a cube with edge length of 0.395 m and is made of medium

density fiberboard (MDF) wood. A Peerless 269 SWR 51

XLS loudspeaker is mounted on the box. The loudspeaker

is driven by a band limited white noise (10 Hz-500 Hz) test

signal. The test signal is not filtered, however, an additional

4.8 Ω series resistance is inserted between the amplifier and

the loudspeaker.

The tested subwoofer is put on the rigid ground of a semi-

anechoic chamber. A p-p probe, calibrated in amplitude and

phase, is moved on two hemispherical surfaces by an autom-

atized positioning system. The distance between the two mi-

crophones is 10 cm. The geometry of the measurement sys-

tem is shown in Figure 6.

Figure 6: Geometry of the measurement set-up.

The enclosure and membrane normal velocities have also

been measured using a scanning Laser Doppler Vibrome-

ter (Polytec OFV 056 / OFV 3001 S) at each point of a

15 × 15 grid on each of the five accessible subwoofer faces.

After velocities have been measured, a BEM modelling of

the subwoofer has been performed. The mesh is made with

1009 points decomposed onto quadrangular elements with 4
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nodes. The pressure field is then computed using normal ve-

locities and a Green function which takes the rigid ground

into account. The values obtained with the BEM modelling

will be used as reference values.

A comparison of the measured pressure and of the pressure

computed by BEM is given in Figure 7 for a point in front

of the membrane and in Figure 8 for a point at the back

of the subwoofer. The discrepancy between the measured

and BEM curves is high at low frequency where the semi-

anechoic room is no longer anechoic. But there are also dif-

ferences above 200 Hz that can reach 3 dB due to the pres-

ence of the positioning system. Differences between BEM

and measured data are larger at the back of the subwoofer

because the probe is more distant from the membrane.
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Figure 7: Measured and BEM pressures in front of the

membrane.
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Figure 8: Measured and BEM pressures at the back of the

subwoofer

The field separation method is applied to the measured

pressure fields using pp, ppa and pva algorithms (no p-v probe

was available at the time of measurements). Results are plot-

ted in figures 9 for a point in front of the membrane and in

Figure 10 for a point a the back of the subwoofer. As seen

in the simulation section, the ppa processing does not give

accurate results. The results obtained here follow this trend.

For the pp and pva processing, curves obtained from the sep-

aration process are generally closer to the BEM curve than

the measured one. The pp and pva methods give the same

results up to 250 Hz. Between 250 Hz and 500 Hz, the two

curves deviates from a maximum of 1 dB. Although, neither

of these two methods seems to be always closer to the BEM

curve.
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Figure 9: FSM and BEM pressures in front of the

membrane.
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Figure 10: FSM and BEM pressures at the back of the

subwoofer

5 Summary
In this paper, four different implementations of the field

separation method have been tested to measure the frequency

response of a closed box subwoofer. The pressure field radi-

ated by the subwoofer was mainly blurred by reflections on
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the walls of the semi-anechoic room below 180 Hz and by

scattering on the positioning system above 180 Hz. From the

simulation and measurements reported here, one can draw

the following conclusions.

• The ppa method should not be used. When using a

very small microphone spacing, the error rate is strongly

reduced however this configuration becomes very sen-

sitive to measurement noise.

• The pv method always gives the better results espe-

cially when noise is added to the measurement data.

In practice, this approach can be carried out with a Mi-

croflown probe. Future work should be conducted to

evaluate the benefit of this configuration. A special at-

tention should be given to the calibration of the p-v

probe and to the sensitivity to noise of pressure and

velocity in actual conditions.

• The pp method gives the same results as the pv method

when data are almost free from errors but is more sen-

sitive to noise especially for low values of a3−a1. This

result can be explained by the fact that when reducing

microphone spacing, pressure fields on the two half

spheres become very similar thus degrading the calcu-

lation of the cmn coefficients.

• The pva method is not as accurate as the pv and pp

methods when no noise is added to the data. Although,

in presence of random errors, the error rate can ap-

proach values obtained with the pp method depending

on the microphone spacing and on the noise level.

Please note that these conclusions were drawn at low fre-

quencies. At higher frequencies, the pva method which re-

lies on first order approximations of acoustic pressure and

velocity would be less efficient.
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