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Abstract

Extraction of the hysteritic nonlinear signature from an elastic wave propagating in a heterogeneous medium constitutes the
main goal of researches in the nonlinear NDT field because of the large amount of possible applications (monitoring damage
evolution, phase transitions, imaging of biological features,...). However, the presence of noise is a veritable issue in order to
improve performances of the NDT techniques. In fact, nonlinear effects are ofen small and can easily be submerged within the
noise.Thus, nonlinear analyses become difficult to set. Here, we analyse in detail the link between the amplitude threshold for
detection of nonlinear effects and different kinds of noise, which might be present in experiments. We also discuss the efficiency
of different approaches.

1 Introduction
Despite the huge potential for applications, the sensitivity

of methods based on nonlinear elasticity to small/weak non-
linear features is strongly dependent on the signal-to-noise
(SNR) ratio [1]. Thus, the nonlinear-to-linear ratio (NLR),
defined as the ratio of the nonlinear signal over the linear
one, is often smaller than the SNR and nonlinear effects are
submerged into the noise level, even though recorded signals
might be well above noise. In principle the problem could be
overcome by increasing the amplitude A of excitation, since
nonlinear effects increases as Ax, with x > 1 [2]. However,
experimental limitations on amplification, frequency, trans-
ducers bandwidth, etc. always make it not practicable. Thus
noise should always be considered to define the performance
of a given experimental technique.

The present contribution aims to show the existence of
strain amplitude thresholds for nonlinerity detection, which
depend on the data analysis adopted. We will consider both
environmental perturbations on the signal (assumed to be
with amplitude not dependent on the driving) and noise re-
lated to the experimental set-up (i.e. proportional to the driv-
ing amplitude). Conclusions about the implications of our
findings will also be discussed. In our analysis, we will
use numerical data, obtained by using a model for the elas-
tic wave propagation based on the Preisach-Mayergoytz ap-
proach [3, 4].

2 Theory
Techniques used in analysis to detect nonlinear contribu-

tions in the response of a sample to a given excitation, can
be classified into three classes, depending on the nonlinear
property exploited:

a) resonance frequency experiments exploit the depen-
dence of the elastic constants on the amplitude of ex-
citation, which leads to softening of materials when
increasing strain levels. This feature can be monitored
analysing the resulting shift of the resonance frequency
to lower frequencies when increasing the driving. [5,
6];

b) experiments based on a frequency domain analysis are
based on generation of higher harmonics during the
propagation of an elastic wave. Such techniques are
termed NonLinear Evolution Wave Spectroscopy meth-
ods (NEWS) [7, 8]

c) a time domain analysis can be performed when analysing
the break of basic properties of linear elastic media,
such as proportionality [9] and reciprocity [10]. These

features are exploited by the Scaling Subtraction Method
(SSM) [11] and Nonlinear Loss of Reciprocity based
methods [12].

In our work, we adopted two of the above mentioned analy-
sis methods: frequency domain analysis (FFT) and time do-
main analysis (SSM). The same experimental procedure can
be adopted to measure signals used for the analysis. In fact,
we could state that one excitation is applied to the sample and
one response signal is measured. A proper time windowing is
applied (at standing wave conditions) and the resulting signal
is analysed in different ways in order to extract the measure-
ment of a nonlinear physical quantity (y) which is measured
at increasing driving amplitudes (x). Finally, from the rela-
tion between y and x, which is often a power law expression
defined as:

y = (ax)b

(1)

the coefficient a and the exponent b can be calculated. The
two parameters give the strength of the nonlinearity (a) and
the kind of nonlinearity (b), i.e. the physical nonlinear mech-
anisms involved. In this Section we will illustrate the proce-
dure for the FFT and SSM methods of analysis. The excita-
tion is assumed to be a continuum wave (cw) with frequency
ω and amplitude A. Frequency is chosen close to the first
resonance mode of the sample (ω = 25.9kHz) to optimise
excitation of the nonlinear feature, as done in experiments.
Amplitude varies to give strain levels in the sample in the
range 6 · 10−9 to 7 · 10−7, in agreement with experimental
conditions. The amplitude span is of the order of 40dB. The
temporal evolution of the velocity field is calculated, assum-
ing a 1-D medium (length of 10 cm), with Young modulus
E = 72GPa , density ρ = 2700 kg/m3 and linear Q factor
equal to 2000. A small scatterer is located in the center of
the bar (in x = 50mm, with length l = 0.5mm). The inten-
sity of the nonlinearity is varied by changing the nonlinearity
density parameter λ.[13]

2.1 Time domain analysis: the Scaling Sub-
traction Method (SSM)

In the SSM analysis, one takes advantage of the influence
of nonlinearity on the superposition principle. Indeed, once
nonlinear effects are present, the proportionality between in-
put and output is no longer valid [14]. Therefore, if we con-
sider the response u(t) of a system to an excitation of ampli-
tude A, it is no longer equal to A/A0 · u0(t), where u0(t) is
the response at a low amplitude excitation A0. The proce-
dure is thus to excite first the sample at a low amplitude (i.e.
sufficiently low to provide negligible nonlinear effects) and
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define a reference signal for amplitude A as:

ure f (t) = A/A0 · u0(t)
(2)

Afterwards, we introduce the nonlinear scaled subtracted sig-
nal (SSM signal)

w(t) = u(t) − ure f (t)
(3)

Its energy (or amplitude) can be considered as the nonlinear
variable to be calculated:

yS S M =

√
1/T
∫ T

0 w2(t0 + t)dt

xu

(4)

where T is the time window length and t0 the initial window
time. Here xu is the energy of the time signal recorded at
amplitude A:

xu =

√
1/T
∫ T

0
u2(t0 + t)dt

(5)

This procedure is illustrated in Fig.1. Let us consider a
temporal signal recorded at the receiver when a cw excita-
tion (with frequency close to resonance) and amplitude A is
applied. We select a short time window (in approximately
standing wave conditions) and compare the signal u(t) (solid
black) with the reference signal built from Eq.1 using data
simulated with a low excitation amplitude (dashed blue): see
Fig.1a. The SSM signal (Eq. 3) is shown in Fig. 1b. Its

Figure 1: a) time signal for the large amplitude excitation
(solid black) and reference signal (blue dotted line)

b)SSM signal c)SSM indicator of nonlinearity

energy yS S M(A) can be estimated, together with the energy
of the recorded signal: xu(A). The procedure is repeated for
several amplitudes and yS S M vs. xu is reported in Fig.1c. The
solid line represents the fitting with a power law expression
(here aS S M = 0.037 s/mm and bS S M = 1.21).

2.2 Nonlinear Elastic Wave Spectroscopy anal-
ysis: Fast Fourier Transform (FFT)

The very same data set used for the SSM analysis can be
analysed in the frequency domain. In this case, the genera-
tion of higher harmonics is exploited as indicator of nonlin-
earity. First, the signal u(t) is filtered with a band-pass fil-
ter around the third harmonic obtaining a signal uIII(t). The
nonlinear variable which can be extracted is the energy of the

filtered signal:

yFFT =

√
1/T
∫ T

0 u2
III(t0 + t)dt

xu

(6)

where T is the time window length and t0 the initial window
time. Here xu is again the energy of the time signal recorded
at amplitude A (see Eq. 5).

The procedure is illustrated in Fig.2, where the same tem-
poral signal as in Fig.1a (u(t)) is considered (cw excitation
with frequency close to resonance, windowing in standing
wave conditions).

Figure 2: a)FFT of the output signal. b)Time signal
corresponding to the third harmonic c)FFT indicator of

nonlinearity

The FFT of the signal is reported in Fig. 2a, where evi-
dence of third harmonics generation is clear. The band-pass
filter range to obtain the uIII signal is highlighted in the fig-
ure (10kHz around the third harmonic). The resulting fil-
tered signal is shown in Fig.2b. From here (at each ampli-
tude) the energy of the filtered signal can be calculated using
Eq. 6. Finally, yFFT is plotted vs. xu in Fig. 2c. The solid
line represents the fitting with a power law expression (here
aFFT = 6 · 10−5[s/mm] and bFFT = 1.20).

2.3 Discussion
Results presented in Fig.s 1b and 2b indicate a stronger

nonlinear-to-linear noise ratio when the analysis is performed
in the time domain (SSM). Indeed, the nonlinear signal (Fig.1b)
is much higher than the nonlinear signal uIII (Fig.2b). For
the given driving amplitude, the ratio is of about 100 (about
40dB), with obvious advantage for the analysis from the ex-
perimental point of view. This was indeed to be expected,
since the analysis in the time domain also accounts for non-
linear effects occurring at the fundamental frequency, which
are cancelled in the FFT analysis. It is remarkable that such
effects are dominant, with respect to energy transferred into
harmonics, thus suggesting that filtering around the funda-
mental frequency might be beneficial to improve the Non-
Linear Signal to Noise ratio (NL-SNR). In Fig. 3a, yS S M

is plotted vs. xu for different values of the hysteretic pa-
rameter λ (the larger λ the stronger the nonlinearity). Here
and in the following we have used λ = [4 × 10−5, 1.6 ×
10−4, 4 × 10−3]Pa−2. In the plot, in log-log scale, data cor-
respond to roughly parallel lines, thus indicating approxi-
mately the same exponent b for each λ . On the contrary, the
coefficient a increases with increasing nonlinearity. It can be
noticed that on the full range of excitation amplitudes used
in the simulation, data fit a straight line.

In Fig. 3b, yFFT is plotted vs xu for two values of the hys-
teretic parameter, λ = [1.6× 10−4, 4× 10−3]Pa−2. In the plot,
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Figure 3: nonlinear quantity y vs. driving amplitude xu for
different nonlinearity strengths (λ). (a) SSM analysis ; (b)

FFT analysis

in log-log scale, data for large driving amplitudes are dis-
tributed along almost parallel lines ( solid lines represent the
power law fitting), thus indicating approximately the same
exponent b for each λ. Again, the coefficient a increases with
increasing nonlinearity. However, for the lawer value of λ (
not reported in the figure ), the existance of a threshold for
nonlinearity detection makes impossible the analysis of the
data. Indeed, for small nonlinearity, yFFT is almost constant
for most of the excitation amplitudes . Third harmonics pro-
portional to driving are generated indipendently from nonlin-
ear effects due to material properties. These effects will be
more important when noise is present.

3 Effects of experimental noise
As mentioned in the Introduction, the goal of the present

paper is to analyse the effects of experimental noise in the de-
tection of nonlinearity and in particular how the noise level
influences the amplitude below which nonlinearity cannot
be detected. We will consider here the combination of two
noises. We consider an ambient noise na, which is at con-
stant amplitude: it is defined as an additive stochastic vari-
able (white noise) with zero average. Its strength ηa is mea-
sured in mm/s, and defined as the noise maximum ampli-
tude. The equipment noise ne has amplitude proportional to
the driving. Thus, we define it as an additive stochastic white
noise ne, with strength ηe (adimensional).

The analysis in this Section is performed as in the previ-
ous one for the two methods, using signals perturbed as:

u′(t) = u(t) + na(t) + ne(t) max [u(t)]
(7)

3.1 Effects of equipment noise
For the analysis performed in the following, some prelim-

inary discussion about the noise level on the nonlinear com-
ponents of the signal is needed. The noise in the SSM signal
w is given as a sum of two noises (see Eq.3), which effects
both the large amplitude and the reference signals. Thus, the

strength of the actual noise is to be properly rescaled. Given
two identical white noises with autocorrelations ψ, the auto-
correlation of the noise resulting from the sum of the two is√

2Ψ. Thus, the actual noise in the SSM signal has strength
ηS S M

e =
√

2 · ηe. On the contrary, the signal strength on the
filtered signal uIII is much smaller than ηe, since the noise
is band-pass filtered as well. For the case considered here,
the noise on the filtered signal has strength η

FFT

e ∼ 0.04 · ηe

(obtained analysing the filtering of an additive white noise
variable in a 10kHz frequency window, the same used in our
FFT analysis of data).

In experiments, equipment noise is of the order of a few
percent of the signal, which corresponds to noise levels from
-50 dB to -30 dB. For SSM, for reasons discussed in the next
Subsection, we extend the analysis up to -20dB equipment
noise. In Fig.4, the SSM and FFT results (Figs. 4(a)and
4(b) respectively) are shown for different equipment noise
levels ne for λ = 1.6 · 10−4. Curves can be fitted with in-

Figure 4: nonlinear quantity y vs. driving amplitude xu for
different strength ne of the equipment noise. (a) SSM

analysis; (b) FFT analysis

dependent power laws at low and high amplitudes . The
detection threshold (intersection between the solid-red and
dashed-black fitting lines) moves to higher amplitudes (on
the x axes) when increasing noise. The analysis in the time
domain is more stable. Indeed, up to a noise with maxi-
mum amplitude of the order of 10% of the signal amplitude
(-20dB), we can still measure the nonlinear strength a and
the exponent b, which are roughly independent from noise
(aS S M = 0.07s/mm; bS S M = 1.18 for all curves).

Larger effects are present when the FFT analysis is per-
formed. The white additive noise has a flat spectrum in the
frequency domain, which is additive to the signal spectrum.
Thus, considering the low values of the amplitude of the third
harmonic (of the order of -40dB, maximum), they can be eas-
ily submerged into the noise spectrum. Thus the threshold is
already very large at 1% of noise level (-40dB). However,
once the nonlinear signal (the filtered signal uIII in this case)
emerges from noise, the nonlinearity parameters are noise in-
dependent: aFFT = 0.002s/mm; bFFT = 1.28.

The threshold can be detected for each noise level and
plotted as a function of 20 ·Log(ηe) (see Fig.5). For all values
of λ, the threshold increases exponentially, for both SSM and
FFT analysis. The fitting function is drawn as a solid line in
the plot (fitting coefficients are also reported in the plot).
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Figure 5: threshold for nonlinearity detection as a function
of the equipment noise level (in dB). (a) SSM analysis; (b)

FFT analysis

3.2 Effects of ambient noise
The effects of ambient noise on the threshold are much

different in the SSM and FFT analysis.
For what concerns the former, we should consider that,

for any given amplitude A, the ambient noise na in the w
signal is amplified by a factor k = A/A0, where A0 is the
lowest excitation amplitude (see Eq.3). Thus, in absence of
equipment noise, the noisy SSM signal is:

w′(t) = w(t) + na(t) − kna(t)
(8)

In a first approximation

max(u) ∝ A

max(u0) ∝ A0 (9)

Thus

w′(t) = w(t) + na(t) −
na(t)

max(u0)
max(u)

(10)

It follows that, neglecting nA(t), which is correct, except for
small amplitudes, the ambient noise is equivalent to an equip-
ment noise of intensity

ne =
ηa

√
2 max(u0)

(11)

where the factor
√

2 is due to neglecting na(t) in Eq.10, while
we have additivity of two identical noises in the w signal
when equipment noise is present (in both the high amplitude
and reference signals).

Figure 6: effects of an additive ambient noise na(t) on SSM
analysis

In Fig. 6, yS S M is plotted vs. xu for λ = 1.6 × 10−4 for
na = 0.0148 mm/s. It can be seen that,for amplitudes larger
than the threshold amplitude, the ambient noise provides the
same results as those obtained with an equipment noise of
amplitude given by Eq.11. At low amplitudes discrepancies
are evident, given by non negligible effects of the term na(t)
in Eq. 10.

The situation is different in the case of the FFT analysis.
Here, the ambient noise has the same strength for each ex-
citation amplitude. Thus the signal to noise ratio is different
for each amplitude A:

S NRA =
ηa

max[u]

The ambient noise is significant only if it gives stronger ef-
fects than equipment noise at amplitudes larger than the de-
tection threshold (defined in the following as Γ). When the
driving amplitude is such that xu = Γ, then S NRA ∼ na/

√
2Γ(we

recall that xuis the integral of u2(t), and u(t)is roughly sinu-
soidal). Thus, the condition for having effects on the thresh-
old due to ambient noise is that:

na ≥
√

2Γne

(12)

In Fig. 7, we consider λ = 1.6×10−4 and effect of ambient
noise na = 0.019 mm/s on the FFT analysis. When each
noise is considered separately,provided intensities are such to
satisfy Eq. 12, we find the same threshold (approximately).

Figure 7: Effect of ambient noise on nonlinearity detection
with FFT analysis

On the contrary, when both noises are present( see fig. 8),
the threshold level is increased only when na is much larger.
Otherwise (not reported) the threshold remains the same.

3.3 Discussion
The analysis reported in the previous Subsection indi-

cates that:

• noise can hinder the presence of nonlinear features when
the excitation amplitude is below a given threshold,
which is much larger for FFT analysis, due to the lower
NLR (nonlinear-to-linear signals ratio);

• ambient noise is always negligible in the case of FFT
analysis, since its effect decreases with amplitude thus
it becomes soon negligible with respect to equipment
noise. An exception could perhaps be in the case of
relaxation and conditioning measurements [15], which
are always performed at low amplitude of excitation.
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Figure 8: Effect of ambiant noise on the threshold of
nonlinearity detection in presence of equipment noise

• ambient noise could be very important in the case of
SSM analysis, especially when the lowest excitation
amplitude is very small. In fact, the ambient noise
is equivalent to an equipment noise with amplitude
inversely proportional to the lowest excitation ampli-
tude (see Eq.11). Thus, a difficulty of implementa-
tion for SSM analysis could be related to the choice
of the amplitude of the lowest excitation A0, which is
as important as the largest excitation (in relation to the
threshold). It is to be mentioned that the lower exci-
tation level could not be increased arbitrarily, since it
should be such that the elastic behavior is roughly lin-
ear. Increasing A0 corresponds to including nonlinear
features already in the reference signal, thus reducing
the efficiency (NLR) of the method.

4 Conclusions
In the present paper we have tested the ability of both

the Scaling Subtraction Method (SSM) and the Fourier anal-
ysis (FFT) to detect nonlinearity in an ultrasonic signal as
a function of the excitation amplitude, both in the presence
and absence of noise. We have considered the influence on
the detection threshold of two kinds of noise we find in ex-
periments (ambient and equipment noise). Numerical results
indicate that the SSM is more sensitive to nonlinearity detec-
tion than FFT. In fact, the SSM indicator plot doesn’t present
any threshold of detection when noise is absent, while the
FFT is unable to detect nonlinearity at very low excitation
amplitudes or very low non linearity. Experimental data sup-
port our considerations[13].

Introducing the equipment noise (i.e. with strength pro-
portional to the excitation amplitude), the FFT threshold of
detection goes up and exceeding a given limit value of the
noise amplitude, the method becomes completely not reli-
able, whereas the SSM method remains sensitive up to a
larger value of noise (see Fig.s 4(a) and 4(b)). We also showed
that adding an ambient noise is equivalent to introduce an
equipement noise with strength given by Eq. 11 for the SSM
procedure. Ambient noise becomes more and more impor-
tant with decreasing the low amplitude excitation used in
SSM. For the FFT method, the effects of ambient noise be-
come soon not significant compared with the equipement noise.
As a result, the threshold of detection is generally not modi-
fied.
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