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In this paper, a thermoacoustic standing-wave device is studied, which consists of a quarter-wavelength straight
resonator equipped with a 600 CPSI ceramic stack. Transient regimes leading to steady state acoustic pressure are
measured under various heating conditions and for several locations of the stack inside the resonator. Experiments
show interesting behaviours such as an “overshoot” for the acoustic pressure before its final stabilization, or a
periodic “on-off” of the wave. A discrete time model is proposed to reproduce these transient behaviours. For each
time step, the temperature distribution along the device is computed first by solving non-linear diffusion equations,
then the amplification rate of the acoustic wave is calculated from the imaginary part of the resonant frequency
of the system. Nonlinear saturating acoustic effects such as the thermoacoustic heat flow inside the stack and
the Rayleigh’s streaming in the resonator are introduced in the model, and their impact on the dynamics of wave
amplitude growth are quantified. The results show good agreement between the experiments and theory, in terms
of amplification process and final stabilized pressure amplitude.

1 Introduction

Thermoacoustic prime movers are acoustic resonators in-
side which a heterogeneously heated open-cells porous ma-
terial (referred as the “stack”) is responsible for the genera-
tion of spontaneous large-amplitude acoustic waves. When
the temperature gradient imposed along the stack exceeds a
critical value (the onset threshold), a self-sustained acoustic
wave is amplified and saturated by non linear effects, leading
to a steady state for the acoustic pressure.

The studied thermoacoustic device is a standing-wave,
quarter-wavelength straight resonator, as schematically shown
in Fig. 1. Though its design is very basic, the behaviour of
this type of system is, by nature, strongly non-linear, and
some particular exciting conditions may lead to complicated
and interesting transient processes such as an “overshoot” or
a periodic “on-off” of the wave.

The experimental investigations of this thermoacoustic
prime mover are reported in section 2. In section 3, the the-
oretical model used for the description of transient regime of
wave amplitude growth is presented and the results are qual-
itatively compared with those obtained from measurements.

2 Experiments

The thermoacoustic device, schematically drawn in Fig.
1 consists of a quarter-wavelength straight cylindrical glass
pipe of length L = 49 cm and inner radius R = 2.6 cm. The
600 CPSI ceramic stack made of square pores (semi-width
rs = 0.45 mm) is equipped at one side with a Nichrome re-
sistant wire. This wire is connected to a DC voltage-current
source and is used to supply an amount of heat Q to the sys-
tem. The length of the stack is ls = 4.8 cm. The hot side of
the stack is located at x = xh. A 1/4 inch condenser micro-
phone is flush-mounted at the location of the rigid termina-
tion (x = L) and is connected to a standard soundcard of a
computer for data acquisition.

Q

0 xs xh L
x

microphone

Figure 1: Schematic drawing of the standing-wave prime
mover.

For particular locations of the stack inside the tube and
low heat power supply, we observed periodic “switch on-off”
of the acoustic wave. For example, the Figure 2-(a) shows the

temporal evolution of the amplitude of acoustic pressure for
xs = 19.2 cm. The onset heat power for this stack position
is Qonset = 19.6W. To obtain the Fig. 2-(a), the heat power
Q has been fixed at a lower value than Qonset (Q = 18 W)
and, after waiting the equilibrium state of heat transfer, an
increment ΔQ = 0.16Q has been applied. When the incre-
ment of heat power is sufficient (e.g. ΔQ = 0.30Q, Fig. 2-
(c)), the “on-off” behaviour disappears and the amplitude of
the acoustic pressure presents an “overshoot” (the amplitude
reaches a maximum and then decreases until the stabiliza-
tion).
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Figure 2: Temporal evolution of the acoustic pressure
p(L, t), for different values of the heat increment ΔQ
(supplied at time t = 0) above the initial heat supply

Q = 18W (slightly below Qonset = 19.6W ). The stack
position is xs = 19.2 cm. (a) ΔQ/Q = 16%, (b)

ΔQ/Q = 24% ,(c) ΔQ/Q = 30%.

3 Theory

3.1 Amplification coefficient

The proper description of the thermoacoustic device is
made by writing the propagation of acoustic waves in the dif-
ferent elements of the system. The assumption of harmonic
plane waves allows to write the acoustic variables as

p1(x, t) = �
{
p̃1(x)e−iωt

}
, (1)

for the acoustic pressure, where ω is the angular frequency
and ∼ denotes the complex amplitude, and

ξ1(x, y, t) = �
{
ξ̃1(x, y)e−iωt

}
, (2)
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where ξ1 can be all of the other first-order acoustic variables
which will be specified later.

With these complex notations, the three different sections
of the system are treated as acoustical two-ports :(

p̃1(xs)
〈ũ1,x(xs)〉

)
=Mw,1

(
p̃1(0)
〈ũ1,x(0)〉

)
(3)

(
p̃1(xh)
〈ũ1,x(xh)〉

)
=Ms

(
p̃1(xs)
〈ũ1,x(xs)〉

)
(4)

(
p̃1(L)
〈ũ1,x(L)〉

)
=Mw,2

(
p̃1(xh)
〈ũ1,x(xh)〉

)
(5)

where u1,x is the axial component of the acoustic volume ve-
locity. The transfer matrices Mw,1, Ms and Mw,2 appearing in
Eqs. (3), (4) and (5) describe acoustic propagation in a duct
or a stack with a heterogeneous temperature distribution :
their analytical expressions are derived from the well-known
differential equation of thermoacoustics [1]. This equation is
transformed into a Volterra integral equation and the trans-
fer matrices are written as infinite series of integral operators
[see Eq. (19) in Ref. [2]].

The combination of Eqs. (3), (4) and (5) leads to the
expression(

p̃1(L)
〈ũ1,x(L)〉

)
= Mw,2 ×Ms ×Mw,1 ×

(
p̃1(0)
〈ũ1,x(0)〉

)
(6)

=

(
Mpp Mpu

Mup Muu

)
×

(
p̃1(0)
〈ũ1,x(0)〉

)
, (7)

and the two conditions p̃1(0) = 0 (no radiation) and 〈ũ1,x(L)〉 =
0 (rigid wall) are reported in Eq. (6) in order to obtain the
characteristic equation of the thermoacoustic device :

Muu (ω, T (x)) = 0. (8)

It is worth noting that Muu is a complex quantity and solv-
ing Eq. (8) is equivalent to solving two equations with two
unknown variables. A solution (ω, T ) of Eq. (8) represents
an operating point of the system. Rigorously, the solutions
of Eq. (8) in the Fourier domain (with the assumption of
a purely real angular frequency) are values for angular fre-
quency ω and temperature T (x) which describe an equilib-
rium point, either unstable (onset threshold) or stable (steady
state), and corresponding for both cases to an acoustic wave
which is neither amplified, nor attenuated.

It is however possible to describe the amplification/attenuation
of the thermoacoustic instability by assuming that the system
does not operate on an equilibrium state, but actually on a
“quasi-steady” state [3]. To do this, we let the angular fre-
quency be allowed to be complex,

ω = Ω + iεg, (9)

so that the equation (1) becomes

p1(x, t) =�
{
p̃1(x)e−iωt

}
= eεgt�

{
p̃1(x)e−iΩt

}
, (10)

meaning that the acoustic pressure is assumed to oscillate at
frequency Ω = � (ω), while the attenuation/growth of the
sound wave is characterized by the thermoacoustic amplifi-
cation coefficient εg. Under the “quasi-steady state” assump-
tion (εg << Ω) and for a fixed temperature distribution T (x)
(the temperature is supposed to be constant on the time scale
of few acoustic periods), it is then possible to solve Eq. (8)
using conventional numerical methods to find the solution(
Ω, εg

)
for the angular frequency of the oscillations and the

amplification rate.
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Figure 3: Spatial temperature distribution along the prime
mover computed from the numerical heat transfer model for

xs = 19.2 cm and Qonset = 21.2 W.

3.2 Onset threshold

Solving Eq. (8) allows to compute Ω and εg for a given
temperature distribution. From this statement, the stability
conditions are simply reached when

εg = 0. (11)

When non-linear effects are neglected, the solution of Eq.
(11) corresponds to the onset threshold of the thermoacoustic
prime mover.

The temperature T (x) is calculated from the knowledge
of the heat power Q supplied at x = xh using an iterative
finite-differences numerical scheme. When the stack is lo-
cated at xs = 19.2 cm, the calculation of onset conditions
gives Qonset = 21.2 W, instead of Qonset = 19.6 W ob-
served in experiments, and the corresponding temperature
field Tonset(x) computed with the numerical scheme is in Fig.
3.

3.3 Transient regime

Apart from the stability conditions, the coefficient εg rep-
resents the amplification rate of the thermoacoustic instabil-
ity. From the consideration of Eq. (10), it is then quite
direct that the time variations of the peak amplitude of the
acoustic pressure, notably at the location of the microphone
P1(t) = |p1(L, t)|, are described by the simple ordinary differ-
ential equation

dP1

dt
− εg (T (x, t)) P1(t) = 0. (12)

The equations governing unsteady heat transfers in the
thermoacoustic prime mover are presented in section 3.3.3.
In these equations, the contributions of two non-linear ef-
fects are added, which are responsible for a distortion of the
temperature field and for the saturation of the acoustic insta-
bility. These two effects – namely, the acoustically enhanced
heat flux and the Rayleigh streaming – are described in sec-
tions 3.3.1 and 3.3.2.

3.3.1 Thermoacoustic heat flux

The first non-linear effect which is taken into account in
the model is the acoustically enhanced heat flux in the stack

ϕac =
1
2
ρ0c0�

{
〈s̃1ṽ∗1,x〉

}
, (13)

where ρ0 and c0 stand for the mean density of the fluid and
the adiabatic speed of sound, respectively, s1 is the oscillat-
ing part of the entropy, v1,x is the axial component of the
acoustic velocity, 〈· · ·〉 denotes the average over the trans-
verse dimension y and ∗ denotes the complex conjugate [4].
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The entropy s1 can be expressed as a function of the acous-
tic pressure p1 and velocity v1,x by using the momentum and
energy conservation equations. From the distribution of the
acoustic fields along the stack, it is then possible to compute
the heat flux ϕac representing the heat transport in the pores
of the stack due to acoustics.

3.3.2 Rayleigh streaming

In closed devices, the existence of a second-order mass
flow due to large amplitude acoustic waves and effects of vis-
cosity is often referred as “Rayleigh streaming”. The inter-
action between a viscous fluid submitted to an acoustic wave
and solid boundaries results in the development of streaming
cells [6]. In heterogeneously heated system such as thermoa-
coustic prime movers, the existence of a steady mass flow
is of great importance because it acts as a source of internal
forced convection and may cause distortion of the tempera-
ture distribution.

In 2001, Bailliet et al. [7] proposed an analytical model
for the computation of Rayleigh streaming in ducts submitted
to a temperature gradient. By using a method of successive
approximations in the governing equations of thermoacous-
tics and stating that the total mass flow through the section of
the duct must be zero, it is possible to derive an expression
for the axial component of the second-order time-averaged
Eulerian velocity v2,x(x, y), valid for cylindrical geometries
[see Eq. (16) in Ref. [7]]. The axial component of the
streaming velocity is then obtained as

V2,x = v2,x +
ρ1v1,x

ρ0
. (14)

Typical results for transverse profiles of V2,x in one stack’s
pore and in the large resonator are shown in Figs. 4-(a) and
4-(b), respectively. Accounting for the effect of streaming in
a mono-dimensional heat transfer model requires to consider
the streaming cells in a very simplified way, as it is illustrated
in Fig. 5-(a) : the large tube and stack sections are separated
into two zones of equivalent cross sectional area (referred as
the inner zone and the outer zone) in which the fluid flows
at the same velocity but in opposite directions. From the cal-
culation of the axial component V2,x given by Eq. (14), it
is then possible to obtain the average streaming velocity in
inner and outer zones as

v( f )
str (x) =

2π
πR2

∫ R

0

∣∣∣V2,x

∣∣∣ rdr, (15)

for the large tube medium, and

v(s)
str(x) =

2π
πr2

s

∫ rs

0

∣∣∣V2,x

∣∣∣ rdr (16)

for the stack medium. Finally, the temporal evolution of the
streaming velocity is described by the differential equation

τ( f ,s) dv( f ,s)
str

dt
+ v( f ,s)

str = Γ
( f ,s)
v P2

1, (17)

where Γ( f )
v (resp. Γ(s)

v ) is obtained from Eq. (15) (resp. Eq.
(16)) with P1 = 1 Pa and T (x) = Tonset(x). In Eq. (17), τ( f )

and τ(s) are characteristic stabilization times of the acoustic
streaming in the large tube and in one stack’s pore, respec-
tively, and defined as [8]

τ( f ) =
4R2

π2ν
� 18 s and τ(s) =

4r2
s

π2ν
� 5.10−3 s. (18)
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Figure 4: Transverse profiles of the acoustic streaming
velocity V2,x in one pore of inner radius rs (a) and in the

resonator of inner radius R (b).

Noting that the characteristic time τ(s) is very small, the es-
tablishment of the streaming cells in the stack may be con-
sidered as instantaneous and Eq. (17) for the stack becomes

v(s)
str = Γ

(s)
v P2

1. (19)

Acoustic streaming may also be responsible for heat con-
vection at the location of the interfaces x = xs and x = xh.
Estimating the quantity of heat carried by the flow is a te-
dious task because of many strongly non-linear and badly
known effects which may occur at the interface between the
waveguide and the stack. However, some recent measure-
ments of Rayleigh streaming velocity in comparable systems
show that the presence of the stack modifies strongly the
mass flow, notably when the stack is located at a maximum
for the amplitude of streaming velocity [11]. Therefore, the
acoustic streaming velocity may become very high and new
convective cells may appear in the vicinity of the stack. All
of these observations seem to indicate that a large amount of
heat may be convected at the boundaries of the stack.

The heat taken away from an interface by the mean mass
flow is estimated in a very simplified way. Considering the
problem of a mean flow, initially at the temperature T1, which
goes towards a rigid interface at constant temperature T2 (Fig. 5-
(b)), the heat flux ϕconv is supposed to be almost equivalent
to this carried away by a steady flow from an isothermal grid
by unwrapping the streaming cell. With this simplified ap-
proach and after some derivations the convection flux at the
interface x = xs is then estimated as

ϕconv(xs) = ϕ
( f )
conv(xs) + ϕ(s)

conv(xs), (20)

with

ϕ
( f )
conv(xs) = ρ0Cpv( f )

str (xs) (T (xs) − Tc) , (21)

ϕ(s)
conv(xs) = −Φρ0Cpv(s)

str(xs) (T (xs) − T (xh)) , (22)

whereΦ is the porosity of the stack. Similarly, the convection
flux at the interface x = xh is estimated as

ϕconv(xh) = ϕ
( f )
conv(xh) + ϕ

(s)
conv(xh), (23)

with

ϕ
( f )
conv(xh) = ρ0Cpv( f )

str (xh) (T (xh) − Tc) , (24)

ϕ(s)
conv(xh) = Φρ0Cpv(s)

str(xh) (T (xh) − T (xs)) . (25)
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Figure 5: Schematic representation of the simplified
approach used to account for acoustic streaming in the

thermoacoustic system. (a) : directions of the mass flow in
the inner and outer zones. (b) : estimation of the heat

convected at an interface by considering the unwrapped
vortex cell and the interface as an equivalent isothermal grid

at constant temperature T2 crossed by a steady flow.

3.3.3 Heat diffusion in the prime mover

The model of heat transfer is derived by writing the heat
diffusion equations in the inner (i) and outer (o) zones (see
section 3.3.2) for each of the three sections of the thermoa-
coustic system (see Eqs. (3), (4) and (5)). The walls of the
resonator are supposed to be perfect thermal sinks at room
temperature Tc and the stack is considered as an equivalent
fluid medium of thermal conductivity

λs = Φλ0 + (1 − Φ)λc (26)

and product of density and isobaric specific heat

ρsCs = Φρ0Cp + (1 − Φ)ρcCc. (27)

The two sections x ∈ [0, xs] and x ∈ [xh, L] corresponding
to an empty large-radius tube are described by the following
equations :

(ρ0Cp)
(i) DT (i)

Dt
=
∂

∂x

(
λ

(i)
0

∂T (i)

∂x

)
− h(i)

(
T (i) − Tc

)
,(28)

(ρ0Cp)(o) DT (o)

Dt
=
∂

∂x

(
λ

(o)
0

∂T (o)

∂x

)
− h(o)

(
T (o) − Tc

)
,(29)

with the convective derivatives

DT (i)

Dt
=
∂T (i)

∂t
− v( f )

str
∂T (i)

∂x
, (30)

DT (o)

Dt
=
∂T (o)

∂t
+ v( f )

str
∂T (o)

∂x
, (31)

and where h(i) and h(o) are convection coefficients character-
izing the transverse heat transfers between the fluid and the
walls. For a steady, laminar flow [9], these coefficients can
be expressed as

h(i,o) = 3.66
λ

(i,o)
0

2R
(32)

The section x ∈ [xs, xh] corresponding to the stack medium
is described by the following equations :

(ρsCs)
(i) DT (i)

Dt
=

∂

∂x

(
λ(i)s
∂T (i)

∂x

)

−h(i)
s

(
T (i) − Tc

)
− ∂ϕac

∂x
(33)
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Figure 6: Temporal evolution of the acoustic pressure P1(t),
for different values of the heat increment ΔQ (supplied at

time t = 0) above the initial heat supply Q = 19.5W
(slightly below Qonset = 21.2W ). The stack position is
xs = 19.2 cm. ΔQ/Q = 16% (—), ΔQ/Q = 24% (−−) ,

ΔQ/Q = 30% (· · ·).

(ρsCs)(o) DT (o)

Dt
=
∂

∂x

(
λ(o)

s
∂T (o)

∂x

)

−h(o)
s

(
T (o) − Tc

)
− ∂ϕac

∂x
(34)

with the convective derivatives

DT (i)

Dt
=
∂T (i)

∂t
+ Φ

(ρ0Cp)(i)

(ρsCs)(i)
v(s)

str
∂T (i)

∂x
(35)

DT (o)

Dt
=
∂T (o)

∂t
− Φ (ρ0Cp)(o)

(ρsCs)(o)
v(s)

str
∂T (o)

∂x
(36)

and where h(i)
s and h(o)

s are coefficients characterizing trans-
verse conductive transfers in the ceramic frame and trans-
verse convective transfers into the pores. These coefficients
are expressed considering the thermic resistance of a cylin-
der, so that their analytical expression is written as

h(i,o)
s =

λ
(i,o)
s,⊥

ln(2)R
, (37)

where λs,⊥ represents an equivalent transverse thermal con-
ductivity of the stack.

Moreover, the following boundary conditions are imposed
at x = 0 and x = L

T (i)(0) = T (o)(0) = T (i)(L) = T (o)(L) = Tc, (38)

and continuity equations are added at the interface x = xs

and x = xh, which are the continuity of temperature between
the inner and outer zones

T (i)(xs) − T (o)(xs) = 0, (39)

T (i)(xh) − T (o)(xh) = 0, (40)

and the continuity of averaged heat flux

λs ∂xT |x+s − λ f ∂xT |x−s + ϕconv(xs) − ϕac(xs) = 0, (41)

λs ∂xT |x+h − λ f ∂xT |x−h + ϕconv(xh) − ϕac(xh) =
Q
πR2
,(42)

Solving the heat diffusion equations (28), (29), (33) and
(34) combined with the appropriate boundary conditions and
continuity equations permits to calculate the temporal evolu-
tion of the temperature T (x, t). This is realized numerically
by using a Crank-Nicholson algorithm [10].

3.3.4 Results

Finally, the computation of the temperature T (x) at time
t (and thus the amplification coefficient by solving Eq. (8))
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Figure 7: Temporal evolution of the acoustic pressure
amplitude P1(t) for a heat increment ΔQ/Q = 16% supplied

at time t = 0 above the initial heat supply Q = 19.5W
(slightly below Qonset = 21.2W ). The stack position is
xs = 19.2 cm. (—) : both thermoacoustic heat flux and

streaming are taken into account ; (−−) : thermoacoustic
flux only ; (· · ·) : acoustic streaming only.

permits to calculate numerically the amplitude of acoustic
pressure from Eq. (12) and streaming velocities from Eqs.
(17) and (19) at time t + dt. The equation (12) is solved us-
ing a fourth-order Runge-Kutta method with a varying time
step, based on Richardson extrapolation. The equation (17)
is solved using a simple explicit Euler method.

The Figure 6 presents the temporal evolution of the acous-
tic pressure amplitude P1 with heating conditions close to
those applied in experiments (see Fig. 2-(a)). The initial
condition for acoustic pressure is P1(t = 0) = 10−8 Pa. The
model reproduces qualitatively the behaviour of the transient
regimes, as well as the “overshoot” effect before stabiliza-
tion. The final stabilized pressure levels are lower than those
measured, which could mean that the heat supply is actually
higher in experiments. Another important point is that the
model cannot reproduce the “on-off” behaviour of the wave
for low heat increments.

The first heat condition (ΔQ/Q = 16% with Q = 19.5W,
slightly below Qonset = 21.2W) has also been investigated
when both non-linear effects are taken into account sepa-
rately, in order to compare their respective influences on the
saturation process. The results presented in Figure 7 shows
that both thermoacoustic flux and acoustic streaming seem
to be responsible for an “overshoot” effect. It also appears
clearly that the thermoacoustic flux is responsible for the
largest part of the wave saturation. However, comparing the
final pressure amplitudes for the different cases, both of the
non-linear effects seem to be important and the acoustic stream-
ing cannot be considered as negligeable in front of the ther-
moacoustic flux. Moreover, with the very simplified approach
developped in the present model (notably for the estimation
of the heat convection at the interfaces), one can resonably
think that the effect of streaming is minimized in comparison
with what happens in the actual device.

4 Conclusion

A simple standing-wave quarter-wavelength thermoacous-
tic prime mover has been studied. The experimental observa-
tions showed interesting behaviours such as an “overshoot”
of the acoustic wave before stabilization, and sometimes a
periodic “switch on-off” for particular conditions concern-
ing the stack location in the resonator and the heat power
supplied to the stack. We proposed a model for the reproduc-
tion of this transient regimes. The temperature distribution is
computed from the derivation of heat transfers along the ther-
moacoustic system and some non-linear effects are added,

which can cause distortion of the temperature field. Then,
from the instantaneous calculation of the temperature, the
amplification/attenuation coefficient is obtained by solving
the characteristic equation of the system, and is used to com-
pute the temporal evolution of the acoustic pressure. This
model is able to reproduce qualitatively the transient regimes
observed in experiments, notably the “overshoot” behaviour.
However neither the thermoacoustic heat flux, nor the acous-
tic streaming seem to be responsible for the periodic “switch
on-off” of the acoustic wave.
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