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Abstract 
We propose a non-parametric technique for source localization with passive sensor arrays, using the concept of a sparse 

representation of sensor measurements. We give an interpretation of sensor data by sparsely representing these data in an 
overcomplete basis. The estimation problem is put in a model-fitting framework in which source position is achieved by 
finding the sparsest representation of the data. The approach presented in the communication is based on the singular value 
decomposition (SVD) of multiple samples of the array output and the use of a second-order cone programming for 
optimization of a resulting objective function. We formulate the problem in a variational framework, where we minimize a 
regularized objective function for finding an estimate of the signal energy as a function of acoustical source position. The key 
is to use an appropriate non-quadratic regularizing functional which leads to sparsity constraints and superresolution. The 
acoustical sources will be correlated or uncorrelated, wideband or narrowband. Numerical and experimental results in an 
anechoic room are presented. Our algorithm is compared to traditional algorithms such as beamforming, Capon and MUSIC.   

1 Introduction 
We consider the problem of locating P radiating sources 

by using an array of N sensors. The emitted energy from 
the sources can be, for example, acoustic or 
electromagnetic, and the receiving sensors could be any 
transducers that convert the received energy to electrical 
signals. Examples of sensors include electromagnetic 
antennas, seismometers, hydrophones and microphones. 
This type of problem finds applications in sonar, radar, 
communication, aeroacoustic testing, seismology, non 
destructive testing, acoustic imaging, air acoustics, 
underwater acoustics, where a passive listening is applied, 
and many other fields. This problem basically consists of 
determining how the energy is distributed over space with 
the source positions representing points in space with high 
concentrations of energy. Hence, we have a spatial spectral 
estimation problem. The sources generate a wave field that 
travels through space and is sampled, in both space and 
time, by the sensor array. It is assumed that the sources are 
point emitters situated in the far field of the array. In 
addition, we assume that both the sources and the sensors 
are in the same plane and that the signals and noise are 
random processes with zero mean, stationary and 
statistically independent. The propagation medium is not 
dispersive and so the waves arriving at the array can be 
considered to be planar. Under these assumptions, the only 
parameter that characterizes the source locations is the 
angle of arrival or direction of arrival [1-3]. 

The goal of array processing is to estimate the locations 
of sources by combining the received data from multiple 
sensors so that the desired signal is enhanced, while the 
unwanted signals, such as interference and noise, are 
suppressed. The most basic approach to array processing is 
the classical delay-and-sum method, in which the received 
signal from each sensor is weighted and delayed so as to 
focus on different points in space. However, this method 
suffers from low resolution and high sidelobe levels. There 
is an important literature on methods that provide superior 
performance over the delay-and-sum approach. In first the 
standard Capon beamformer has been proposed followed by 
the multiple signal classification (MUSIC) method. These 
techniques provide superresolution when the sources are 
uncorrelated and the number of snapshots is high. Many 
extensions of these methods have been proposed to deal 
with modelling errors, such as steering vector mismatches. 
However, none of these methods is able to cope with very 
low snapshot numbers, coherent or highly correlated 
sources. Recently, sparse-representation-based source 
localization methods provide another interpretation of array 
data by sparsely representing array data in an overcomplete 

basis, stressing the fact that the position of sources are very 
sparse relative to the entire spatial domain. In this way, the 
localization problem is put in a model-fitting framework in 
which this localization is achieved by finding the sparsest 
representation of the data. The approach presented in the 
communication is based on the singular value 
decomposition (SVD) of multiple samples of the array 
output and the use of a second-order cone programming for 
optimization of a resulting objective function. The key is to 
use an appropriate non-quadratic regularizing functional 
which leads to sparsity constraints and superresolution. 
With the proposed method the source localization problem 
is transformed into a convex optimization problem that can 
be efficiently solved by efficient algorithms. In particular, 
the problem is formulated as an l1-regularization problem; 
the l1-norm is used to impose sparsity-constraint on the 
spatial spectrum. In this communication, the acoustical 
sources will be correlated or uncorrelated, wideband or 
narrowband.  

The remainder of this paper is organized as follows. In 
section 2 the array signal model is presented. In section 3 
the l1-regurarisation method for source localization is 
described. Numerical and experimental results in an 
anechoic room are conducted to compare the performance 
of the studied algorithm with traditional algorithms such as 
beamforming, Capon and MUSIC for source localization. A 
conclusion is given in section4.  

2 Array signal model 
The receiving array considered in this communication 

has N omnidirectional sensors and is immersed in an 
acoustic noise field which consists of P independent 
discrete sources. Because of the geometric positions of the 
sensors, the total signal power incident on each sensor is the 
same, but the phase information is different on each 
receiver. The purpose of any estimator is to use the phase 
information in some way to infer which signals reached the 
receiving array and the goal of sensor array source 
localization is to find the locations of sources of wavefields 
that impinge on the acoustical array. The available 
information is the geometry of the array, the parameters of 
the medium where wavefields propagate and the time 
measurements or outputs of the sensors. For purposes of 
exposition, we first focus on the narrowband scenario. For a 
set of  P sources, the signals observed at the outputs of the 
N sensors array are represented by the N-dimensional 
vector [1-3] 

               y(t) =    ∑
=

P

1i
a(

i
θ ) si(t) + n(t)                       (1) 
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where si(t) is the complex amplitude of the ith source. It is a 
zero-mean complex random variable: E[si(t)]=0. The signal 
power pi of the ith source which we wish to localize is 
represented by its variance pi = Var[si(t)]=E[si(t)si(t)

*]. Here 
E[ ] denotes an ensemble average and the superscript * 
represents the complex conjugate. The direction of arrival 
of the ith source is represented by the N-dimensional vector 

a )(θ i =[ T
N21 ])iθa....)i(θa)i(θa ( , often called the array 

manifold vector or the ith steering vector or the ith source 
direction vector and b(t) is the additive noise. The noise is 
assumed to be spatially white (independent or uncorrelated 
from sensor to sensor) and the same power level of noise is 
present in each receiver. With these assumptions, the cross-
spectral matrix for the noise alone is Rb=E[b(t)b(t)H]=pbI 
where pb is the noise power, I is the (NxN) identity matrix 
and the superscript H denotes the complex-conjugate 
transpose operation. Equation (1) may be rewritten in the 
matrix form  

  y(t)  =  A )(θ s(t)  +  b (t)    t ∈{t1, t2,…tT }          (2) 

The (NxP) matrix A )(θ , where each column is a source 

direction vector : A )(θ = [ ])θa....)(θ a)a(θ P21 (  , is the so-

called array manifold matrix. For any single plane wave 
arrival, the outputs from the N individual receivers will 
differ in phase by an amount determined by the geometry of 
the array and the arrival direction. In other words, the 
elements Aqr of the matrix A )(θ  are functions of the signal 

arrival angles and the array elements locations. Thus, one 
has Aqr = exp(jφ qr) where φ qr is the phase of the signal at 

the qth receiver from the rth source, measured relative to 
some arbitrary reference point. That is, Aqr depends on the 
qth array element, its position relative to the origin of the 
coordinate system, and its response to a signal incident 
from the direction of the rth source. s(t) is the K-
dimensional vector, the components of which are the 
complex amplitudes of the sources. Since the P arrivals are 
by assumption independent, the correlation matrix between 
the different signal sources is 

  

    Rs=E[s(t)s(t)H] = diag(p1, p2,…,pP)                         (3) 

and at the operating frequency, the spatial correlation 
matrix (or covariance matrix) of the receiver outputs may 
be expressed, for signals uncorrelated of each other and of 
noise, as     

         R = E[y(t)y(t)H] = A )(θ Rs A )(θ H + Rb            (4) 

    In the case of wideband sources it is impossible to 
represent the delays by simple phase shifts. A way to deal 
with this issue is to separate the signal spectrum into 
several narrowband regions, each of which yields to
narrowband processing. To separate the spectrum into 
narrowband regions it is possible to use a filter bank h1(t), 
h2(t),…,hN(t) in which each filter hk(t) has a small spectral 
support around the central frequency fk, satisfying the 
narrowband assumption. After filtering the outputs of each 
sensor with each filter the result is a set of W time-domain 
problems of the form  

                        yk(t)  =  A )θ ,f ( k sk(t)  +  bk(t)            (5) 

We can then solve each of the W problems using the 
narrowband methods described in the communication. Once 
we solve each of the narrowband sub-problems we get a 
spatio-frequency spectrum of the localized radiating 
sources. Unlike the narrowband case, in the wideband case 
the steering matrix is not the same for all snapshots since it 
depends on frequency. For simplicity, we consider in our 
presentation the narrowband case and the estimation of 
directions of arrival is a nonlinear parametric problem: 
these directions are present in the array manifold matrix 
A )(θ which is unknown. This matrix is composed of 

steering vectors corresponding to each source location. Our 
objective is to estimate the directions of arrival{ }iθ , 

i=1,2…,P from the N sensors output data y(t) in the case of 
correlated or uncorrelated sources, narrowband or wideband 
sources.  

3 Source localization by sparsity 

3.1 Overcomplete representation  
      The problem solved by the sparse representation is to 
search for the most compact representation of a signal in 
terms of linear combination of atoms in an overcomplete 
dictionary. The problem of finding the sparse representation 
of a signal in a given overcomplete dictionary can be 
formulated as follows. Given a (NxL) matrix A∈CNxL  
containing the elements of an overcomplete dictionary in its 
columns, with L>N,  and usually L>>N, and a (Nx1) signal 
y ∈CN , the problem of sparse representation is to find an 
(Lx1) coefficient vector x such as y = Ax and 0x  is 

minimized, where  0x is the l0 norm and is equivalent to 

the number of non-zero components in the vector x. We 
would like to find [4-6] 
   

                              min 0x   subject to  y=Ax                 (6) 

Finding the solution to equation (6) is very hard due to its 
nature of combinational optimization. It can be shown that 
under certain conditions on A and x, the optimal value of 
this problem can be found exactly by replacing the l0-norm 
in equation (6) with the l1-norm and by solving a related 
problem   

                               min 1x   subject to  y=Ax                (7) 

A natural extension when we allow white Gaussian noise is  

                y(t) = A x(t) + b(t) t ∈{t1, t2,…tT }                 (8) 
  

     A generalized version of equation (7), which allows for 
certain degree of noise, is to find x such that the following 
objective function is minimized [4-6] 
  

                        min 
1

2
2

xxAy λ− +                        (9)        

where λ  is a scalar regularization parameter that balances 
the tradeoff between reconstruction error and the sparsity of 
the solution. The l2-term forces the residual y-Ax to be 
small, whereas the l1-term enforces sparsity of the 
representation. The optimization criterion is a convex 
optimization problem and can be readily handled by the use 
of a second order cone programming (SOC) algorithm [7].  
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    Note that equation (8) is different from equation (2). The 
(NxP) matrix A )(θ in (2) depends of the unknown source 

locations that we wish to estimate. The (NxL) matrix A is 
known and does not depend on the true source locations: 
following a spatial sparsity approach we can uniformly 
discretize the bearing space into L>>P possible angle of 
arrival and construct a redundant matrix of L atoms 
corresponding to the array responses of the respective 
angles of arrival. We introduce then a grid of possible 
source locations { }L21 θ~a....θ~ aθ~  and construct the (NxL) 

matrix A= [ ])θ~a....)θ~( a)θ~a( L21 ( . This matrix is composed of 

steering vectors corresponding to each potential source 
location as its columns and form the overcomplete basis of 
the sparse representation. Also, let  

                               xi(t) =  
⎩
⎨
⎧ θθ =

otherwise    0 

~
 if  (t)s kik                    (10) 

and the problem takes the form given in (8).  The important 
point is that A is known and does not depend on the source 
location{ }iθ , as A )(θ did. For one snapshot, the sparse 

representation of sensor measurements takes the following 
form  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎡

)t(y
.
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j1

= ])θ~)....aθ~a....)θ~( a)θ~[a( LP21 ((

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
)t(x

.

.
0

)t(x
0

jP

j1

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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jN

j2

j1

                                                                                        (11) 
         This expression constitutes the overcomplete 
representation for a single time sample. The source 
locations are now encoded by the non-zero indices of x(t) 
which is a L-sparse vector. With this representation the 
recovery of the source locations is equivalent to the 
recovery of the support of the sparse vector x(t). In effect, 
we have transformed the problem from finding a point 
estimate of )(θ , to estimating the spatial spectrum of x(t) 

which has to exhibit sharp peaks at the correct source 
locations. In principle, one can use the over complete basis 
methodology at each time t. This leads to an important 
computational load and to sensitivity to noise, since no 
advantage is taken of other time samples. We would like to 
use all the sensor data in synergy to obtain greater accuracy 
and robustness to noise.  

3.2 l1-SVD based approach 
    We consider an approach that uses different time samples 
in synergy. Let Y the (NxT) matrix of time data, X the 
(LxT) matrix parameterized temporally and spatially and N 
the (NxT) matrix of noise 
  

                    Y= [y(1) y(2) …. y(T)]                                (12) 

                     X = [x(1) x(2)….x(T)]                                (13) 

                     B = [b(1) b(2) ….b(T)]                               (14) 

Then, (8) becomes  

                            Y=AX + B                                           (15) 

The matrix X is parameterized temporally and spatially but 
sparsity only has to be enforced in space since the sources 
amplitude s(t) are in general not sparse in time. To reduce 
the computational complexity and sensitivity to noise, we 
use the SVD of the (NxT) data matrix Y; we obtain then the 
signal and noise subspaces, we keep the signal subspace 
and mold the problem with reduced dimensions into a 
multiple sample sparse spectrum estimation problem. We 
take the singular value decomposition of the observed data 
matrix Y 
                                             Y = WMV’                        (16) 

and we keep a reduced (NxP) dimensional matrix YSV (the 
reduced observation matrix) which contains most of the 
signal power (the signal subspace)  
                                   YSV = WMDp = YVDp                  (17) 
where Dp = [IP 0]T with IP the (PxP) identity matrix an 0 the   
Px(T-P) matrix of zeros. Similarly we get 

                              XSV = XVDp   ; BSV = BVDp              (18)   
and then we have 

                                    YSV = AXSV + BSV                       (19) 

Note that we have transformed Y (NxT) into YSV (NxP), X 
(LxT) into XSV (LxP) and B (NxT) into BSV (NxP) which 
reduces the computational complexity. For typical 
situations where the number of sources is small and the 
number of time samples may be in the order of hundreds 
this reduction in complexity is very appreciable.  
       Now, let us consider each column of this equation 
separately, which corresponds to each singular vector of the 
subspace signal 
                             
                 ySV(p) = A xSV(p) + bSV(p)        p=1,2…,P    (20)  

This equation has the same form as (8), except that instead 
of indexing samples by time, we index them by the singular 
vector number. We combine the data with respect to the 
singular vector index p using an l2 norm. We define  

                        ∑
=

=
P

1p

2
iSV ))p(x(x~ )2(l

i
                             (21) 

and want to impose sparsity in Xsv only spatially, (in terms 
of i) and not in terms the singular vector index p. The 
sparsity of the resulting (Lx1) vector )(x~   l 2

                              )(x~   l 2 = [ )2(l
L....

)2(l
2

)2(l
1 x~x~x~ ]T                 (22) 

corresponds to the sparsity of the spatial spectrum. Since 
one requires sparsity in the spatial dimension only, we 
compute in first the l2-norm of all singular vectors of a 
particular spatial index of xSV following (21), we penalize 
the l1-norm of  )(x~   l 2

                 
1

)(x~   l 2 = ∑
=

∑
=

P

1p

2
iSV ))p(x(

L

1i

  =                     (23) 

       We can find the spatial spectrum by minimizing the 
cost function 

        
1

2
SVSV

)(x~XAY
2

f
)x~J( lλ+−=                   (24) 
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  Note that this method uses information about the 
number of sources P, however, an incorrect determination 
of the number of sources in our framework has no 
important consequences, since we are not relying on the 
structural assumptions of the orthogonality of the signal and 
noise subspaces, such as the algorithm MUSIC does. 

   We have to minimize the objective function (24). We 
use the second order cone programming (SOCP) which is a 
suitable framework for optimizing functions [7]. The 
quality of estimation is confined to the grid resolution given 
by the angular position )(θ . We cannot make the grid very 

fine uniformly, since this would increase the computational 
complexity significantly. We create an iterative process of 
refining the grid whit higher and higher resolution around 
the estimated regions. This requires an approximate 
knowledge of the locations of the sources, which can be 
obtained by using a coarse grid first. 

    It should be noted that the SOCP (or l1-SVD) 
algorithm presents often a bias in the localization of closely 
spaced sources. We can easily verify that this is not due to 
the grid: even if the sources are present in the grid, the 
angular deviation exists. In fact, it is a bias inherent to the 
algorithm itself and is considered as a cost of the sparsity. 
We can attenuate this bias by a simple approach: instead of 
scaling the singular vectors by the singular values, while 
forming YSV, we may scale them by the squares of singular 
values. A new reduced observation matrix is then obtained. 
A SOCP optimal algorithm is then obtained. We present in 
the next section several results for the optimal SOCP source 
localization scheme. We compare the spectra of the 
methodology presented in the communication to those of 
beamforming, MUSIC and Capon’s method under various 
conditions.  

4 Numerical and experimental tests 
  Numerical simulations and experimental tests were 

designed to evaluate the performances of the SOCP 
algorithm in the source localization context. We consider a 
uniform linear array with N=6 omnidirectional sensors 
separated by half a wavelength of the actual narrowband 
source signals. Two narrowband signals in the far-field 
impinge on this array from directions of arrival 13° and 
18°, which are closer together than the Rayleigh limit. The 
SNR is 20 dB, the number of snapshots is T=1024 and the 
grid is uniform with 1° sampling. We have L=180. In 
Figure 1 we present the spectrum obtained by SOCP and 
SOCP optimal. A bias is present with the use of SOCP 
(Figure 1(a)) and this bias disappears with SOCP optimal. 
A zoom of the spatial spectrum has been realized to observe 
the presence and the strongly attenuation of the bias as 
shown in Figure 1 (b).  

(a) (b) 

Figure1: (a) Localization of two uncorrelated sources by 
SOCP and optimal SOCP ; (b) zoom of the spatial spectrum 

We consider now the case where the number of 
snapshots is T=20 and compare the spectrum obtained 
using the optimal SOCP method with those of conventional 
beamforming, Capon’s method and MUSIC. We recall that 
the spectrum by beamforming is obtained by [1-3] 

                        pCB  = 
2N

1
 a )(θ H R a )(θ                 (25)     

the spectrum by Capon is given by [1-3] 

                                 pCapon  =   
)(aRθ)(a

1
1H θ−             (26)    

the spectrum  by MUSIC is given by [1-3] 

                               pMUSIC = 
)θ(aUU)θ(a

1
H
NN

H
           (27) 

where UN is the matrix of eigenvectors associated to the 
noise subspace.  

    Figure 2 (a) presents the localization of two 
uncorrelated sources situated at 13° and 18° using the four 
algorithms, with T = 20 samples. SNR is equal to 10 dB.  
The SOCP algorithm is able to resolve the two closely 
spaced sources, whereas MUSIC algorithm, Capon’s 
method and beamforming method merge the two peaks. 

 The high resolution methods of spatial spectrum 
estimation frequency fail to work in a multipath 
environment if the multipath arrivals differ only in a 
constant carrier phase and amplitude. The magnitude of the 
correlation coefficient of such signals is equal to one and 
we refer to the signals as being totally correlated or 
coherent. Figure 2 (b) shows the spatial spectra for two 
correlated sources with T=20.  SNR is 20 dB. Again, only 
the SOCP algorithm is able to resolve the two sources. This 
illustrates the power of our methodology in resolving 
closely spaced sources despite strong correlation between 
the sources.   
                       

(a) (b) 

Figure 2 : (a) Localization of two uncorrelated sources ; 
(b) localization of two correlated sources 

In Figure 3 we plot the spectra obtained using MUSIC 
and SOCP optimal for the same assumed number of sources 
which varies from 1 to 5. The exact number of sources is 2. 
The SOCP algorithm is more robust than MUSIC when the 
number of sources is unknown.  

    (a) 
 (b) 

Figure 3 : Sensitivity of (a) MUSIC and (b) SOCP 
optimal to the assumed number of sources 
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In Figure 4 we present an example using the same six 
element uniform array but the signals are now wideband. 
We consider three chirps at 60°, 78° and 100°with 
frequency from 250 Hz to 500 H, T=1000 and SNR=20 dB. 
Using conventional beamforming, the chirps are merged 
and cannot be separated, whereas using SOCP they can be 
easily distinguished through their support. This shows that 
SOCP methodology is useful for wideband acoustical 
source localization.  

 (a)  (b) 

Figure 4 : Wideband source localization (a) 
Beamforming; (b) SOCP optimal 

      Experimental results are now presented, where our 
purpose is the localization of noise sources generated by 
two loudspeakers. The experimental setup is schematically 
shown in the block diagram of Figure 5 where an acoustical 
array and two sources (the loudspeakers) are placed in the 
anechoic chamber. The receiving acoustical array is linear 
and formed with six microphones equally spaced, with 
interelement spacing of d =4.5 cm. The two sources and the 
acoustical array are in the same horizontal plane. The 
transmitting loudspeakers generate two typical audio 
signals at a frequency of 3800 Hz corresponding to a 
microphone separation distance of one-half wavelength. 
The number of snapshots is T=4096. We are able to find the 
direction of the two sources by using the algorithms 
presented in the communication.  

Figure 5: Block diagram experimental system 

    Figure 6 shows the experimental results of the spatial 
spectra for conventional beamforming, Capon, MUSIC and 
optimal SOCP algorithms. The two close acoustical sources 
are uncorrelated (Figure 6(a)) and correlated (Figure 6(b)). 
It is shown from these plots that the SOCP algorithm gives 
better results than conventional beamforming, Capon and 
MUSIC in particular for the correlated case. From these 
spatial-spectra plots we obtain the arrival angles of the two 
close sources 1θ = 13° and 2θ = 18°.  

  (a) (b) 

Figure 6 : Localization of acoustical sources in anechoic 
room. (a) Uncorrelated sources; (b) Correlated sources 

5 Conclusion 
We have presented a formulation of sensor array source 

localization problem in a sparse signal representation 
framework. The method presents several advantages over 
existing source localization methods such as beamforming, 
Capon and MUSIC including increased resolution, 
improved robustness to correlation of the sources and 
robustness in the localization of wideband sources. 
Numerical and experimental results have shown the 
effectiveness of the procedure. Further research include an 
investigation about the computation of the regularization 
parameter, a study of uniqueness and stability of sparse 
signal representation for the overcomplete bases that arise 
in source localization applications, an analysis of the 
number of sensors, the number of snapshots and the SNR in 
source localization.  

These techniques have been developed for the 
localization of sources using an array of receivers. 
However, the principles can be applied to a wide range of 
other estimation problems, of which the spectrum analysis 
of a time series for eigenrequencies determination is an 
example 
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