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The acoustic hybrid approach is commonly used in the simulation of turbomachinery flows. In this technique, the
aerodynamic field is solved in order to define acoustic sources, and then, these sources are propagated by solving
linearised Euler equations (LEE) using a high order finite volume solver based on MLS reconstruction. One of the
most widespread numerical techniques used in the numerical simulations of rotor/stator or rotor/rotor interaction
flow is the so-called sliding mesh method. This technique allows relative sliding of one grid adjacent to another
grid (static or in motion). However, when a high-order method is used, the interpolation used in the sliding mesh
model needs to be of, at least, the same order than the numerical scheme, in order to prevent loss of accuracy. In
this work we present a sliding mesh model based on the use of Moving Least Squares (MLS) approximants. It is
used with a high-order (> 2) finite volume method that computes the derivatives of the Taylor reconstruction inside
each control volume using MLS approximants. Thus, this new sliding mesh model fits naturally in a high-order
finite volume framework for the computation of acoustic wave propagation into turbomachinery.

1 Introduction
The acoustic hybrid approach is usually used for the

computation of turbomachinery noise: the aerodynamic
field is solved in order to define acoustic sources, and
then, these sources are propagated by solving linearised
Euler equations (LEE). The aim of our work is to develop
a high-order finite volume solver for the computation of
the two steps of the hybrid approach: the computation of
turbulent flow and the resolution of the acoustic field. Our
finite volume method is based on MLS reconstruction. The
theoretical fundamentals of the used finite volume method
were presented in [1, 2, 6, 7] and references therein. A first
application of FV-MLS for turbomachinery aeroacoustics
was presented in [2, 5]. Acoustic sources were obtained
using a URANS approach and propagated using LEE. Only
stator blades and rotating sources into the propagating
medium were considered. This first tentative permits use
to study the attenuation due to the acoustic screen effect of
stator blades. The next step is to introduce the rotating part
into the propagation medium by the use of sliding mesh
method coupled to FV-MLS solver.

One numerical technique used in the numerical
simulations of rotor/stator or rotor/rotor interaction flow is
the so-called sliding mesh [10, 4] method. This technique
allows relative sliding of one grid adjacent to another grid
(static or in motion). Thus, non-matching cells [8, 9]may
appear at the interface between static and moving grids.
This introduces a problem of interpolation. In addition,
when a high-order method is used, the interpolation used
in the sliding mesh model needs to be of, at least, the
same order than the numerical scheme, in order to prevent
loss of accuracy. In this work we present a sliding mesh
model based on the use of Moving Least Squares (MLS)
approximants [3]. It is used with a high-order (> 2) finite
volume method that computes the derivatives of the Taylor
reconstruction inside each control volume using MLS
approximants [1, 2, 6, 7]. Thus, this new sliding mesh
model fits naturally in a high-order finite volume framework
for the computation of acoustic wave propagation into
turbomachinery.

The paper is organized as follows. In section 2, the
Moving Least Squares (MLS) approximation and the FV-
MLS method are briefly described. The new MLS-based
sliding-mesh technique is presented in section 3. Then,
section 4 is devoted to numerical simulations. Finally, the
conclusions are drawn in section 5.

2 Moving Least Squares (MLS)
approximation

For clarity, in the following exposition, we consider a
single variable u, instead of the vector-variable U used in
Navier-Stokes or LEE equations. If we consider a function
u(x) defined in a domain Ω, the basic idea of the MLS
approach is to approximate u(x), at a given point x, through
a weighted least-squares fitting of u(x) in a neighborhood of
x as

u (x) ≈ uh (x) =

m∑
i=1

pi (x)αi (z)
∣∣∣∣
z=x

= pT (x)α (z)
∣∣∣∣
z=x

(1)

pT (x) is a (usually) polynomial basis and α(z)
∣∣∣∣
z=x

is a set
of parameters to be determined, such that they minimize the
following error functional:

J
(
α(z)

∣∣∣∣
z=x

)
=

∫
y∈Ωx

W(z−y, h)
∣∣∣∣
z=x

[
u(y) − pT (y)α(z)

∣∣∣∣
z=x

]2
dΩx

(2)
where W(z − y, h)

∣∣∣∣
z=x

is a kernel with compact support
(denoted by Ωx) centered at z = x. The parameter
h is the smoothing length, which is a measure of the
size of the support Ωx [1]. The role of the kernel is to
weight the importance of the different points used for the
approximation. The minimization of J gives the following:

∫
y∈Ωx

p(y)W(z − y, h)
∣∣∣∣
z=x

u(y)dΩx = M(x)α (z)
∣∣∣∣
z=x

(3)

where the moment matrix M(x) is defined as

M(x) =

∫
y∈Ωx

p(y)W(z − y,h)
∣∣∣∣
z=x

pT(y)dΩx (4)

Integrals in equations (3) and (4) are evaluated using the
nodes in Ωx (nx) as quadrature points, to obtain the following
value of α

α (z)
∣∣∣∣
z=x

= M−1(x)PΩx W(x)uΩx (5)

where the matrix

uΩx =
(
u(x1) · · · u(xnxI

)
)

(6)

contains the nodal values of u(x) associated to the nx nodes
in Ωx (figure 1). In the above, nxI is the number of neighbors
of the cell I.
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Figure 1: Meshfree approximation: general scheme.
Support for reconstruction at P.

Thus, the discrete expression of the moment matrix is
M = PΩx W(x)PT

Ωx
(see [1]).

We also define the matrices (see [1]):

PΩx =
(
p(x1) · · · p(xnxI

)
)

(7)

and
W(x) = diag(Wi(x)) i = 1, · · · ,nxI . (8)

From a practical point of view, for each point I we need to
define a set of neighbors inside the compact support Ωx. The
minimum number of neighbors is determined by the number
of functions in the polynomial basis p(x). The stencil used is
schematically plotted in figure 2:

4.5. Approche volumes finis et approximation par moindres carrés mobiles, FV-MLS 199

FIGURE 4.16 : Stencil pour l’approximation de U(x).

U(x)|I =
nxI

∑
j=1

N j(x)U j (4.219)

L’équation 4.219 stipule que l’approximation en un point x au voisinage de I, est calculée en utilisant les

nœuds nx environnants. Dans un maillage non structuré triangulaire, si l’on considère I le centroïde de la

cellule active et J les centroïdes des cellules nx environnantes, cela conduit à la construction du stencil

autour de I.

Toutes les dérivées peuvent être calculées en utilisant l’équation 4.219.

∂ αUI

∂xα−β ∂yβ ≈
nxI

∑
j=1

∂ αN j(xI)

∂x(α−β )∂yβ U j (4.220)

Les dérivées d’ordre élevé de N(xI) au centroïde de I sont données par :

∂ αN(xI)

∂x(α−β )∂yβ =
∂ α pT (0)

∂x(α−β )∂yβ C(xI)+ pT (0)
∂ αC(xI)

∂x(α−β )∂yβ (4.221)

où α est compris entre 0 et m et β entre 0 et α . Les dérivées de l’équation précédente d’ordre supérieur

à 2 du polynôme p sont simples à calculer contrairement à celles de la matrice C(xI). Pour des ordres

supérieures à 2, les dérivées de la matrice C(xI) sont négligeables par rapport à celles du polynôme p,

ainsi l’équation devient :

∂ αN(xI)

∂x(α−β )∂yβ ≈
∂ α pT (0)

∂x(α−β )∂yβ C(xI) (4.222)

La reconstruction de la variable U(x)|I à l’ordre N est obtenue à partir de l’équation suivante :

Figure 2: Stencil for reconstruction at I.

Following [1], the interpolation structure can be identified as

uI
h(x) = pT (x)α (z)

∣∣∣∣
z=x

= pT(x)M−1(x)PΩx W(x)uΩx = NT(x)uΩx

(9)
The MLS “shape functions” are defined as:

NT(x) = pT(x)M−1(x)PΩx W(x) (10)

and finally we can write:

uI
h(x) =

nxI∑
j=1

N j(x)u j (11)

The approximation is written in terms of the MLS “shape
functions” NT(x). In this work the following polynomial
cubic basis is used:

p(x) =
(
1, x, y, xy, x2, y2, x2y, y2x, x3, y3

)
(12)

where (x, y) are the Cartesian coordinates of vector x. Note
that extension for 3D is straightforward.

In order to improve the conditioning, the polynomial
basis is locally defined and scaled: if the shape functions
are evaluated at xI , the polynomial basis is evaluated at

(x − xI)/h. With this coordinate transformation, the MLS
shape functions can be written as:

NT(x) = pT(0)C(xI) = pT(0)M−1(xI)PΩxI
W(xI) (13)

with
C(x) = M−1(x)PΩx W(x) (14)

2.0.1 MLS-based Finite volume method

MLS method has been used also to develop high-order
finite volume methods (FV-MLS). In a finite volume
framework, we need to compute the derivatives in order
to perform the reconstruction of the variables at interfaces
using Taylor series. In this case, the derivatives of NT(x) can
be used to compute an approximation to the derivatives of
the function. So, the gradient of uh(x) at cell I is evaluated
as

∇uI
h(x) =

nxI∑
j=1

u j∇N j(x) (15)

With Moving Least-Squares we can build a the spatial
representation of the solution. This approximation gives us
a continuous, highly-accurate and centered representation
of the solution. Thus, a direct evaluation of the fluxes is
possible, and in fact, it is efficient when the problem is
not predominantly hyperbolic. Note that in case of the
Navier-Stokes equations, we can compute directly viscous
terms at integration points using MLS. For convection-
dominated problems, we use a different approximation for
hyperbolic and elliptic terms. Thus, for hyperbolic terms
we “break” the reconstruction (via Taylor series). Thus,
we approximate the variable locally inside each cell I, and
this approximation is discontinuous across cell interfaces
[1]. This approximation allows us to use the powerful and
efficient Riemann solvers technology, limiters and other
finite volume techniques. More details about the FV-MLS
method can be found in [1, 2, 5, 6, 7].

3 Sliding mesh
Sliding mesh technique requires two meshed zones. In a

turbomachine, one of them is related to the stator (fixed) and
the other is related to the rotor (moving). The rotating grid
slides over the fixed grid. The sliding takes place on a plane
that is called interface. Note that in practice, the interface
is composed by two coincident edges (faces in 3D). One of
them belongs to the fixed grid and the other to the moving
mesh.

When this technique is applied, the mesh is no longer
conformal. An Arbitrary Lagrangian-Eulerian (ALE)
method is used to write the conservation equations in the
two meshed regions. Note that the mesh movement is
not continuous, since each time step the moving region is
displaced a small distance. Then the set of conservation
equations is iteratively solved until convergence. Then the
moving grid is displaced again.

3.1 MLS-based sliding mesh
In this work we propose the use of MLS to compute

the interpolations required at the interface. The first step
is to identify the neighboring cells in order to know the
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stencil for the computation of MLS-shape functions. We call
intersection nodes to nodes placed at interface between the
moving mesh and the fixed mesh.

3.1.1 Recursive searching of intersection nodes

We call main interface to the interface edge (face in 3D)
that is part of the moving mesh, and secondary interface to
the interface edge that belongs to the fixed mesh (see figure
3).

Figure 3: Schematic representation of MLS-based sliding
mesh

First, we identify the “main interface”edges, with a loop
over the edges of the moving mesh. If one edge is labeled as
interface edge, the secondary interface is straightforwardly
determined. Once the main and secondary interfaces are
determined, we find intersection nodes.

3.1.2 Computation of the numerical flux at interface

The exchange of information between the moving
domain and the fixed one is made at the interface (main and
secondary). In a finite volume framework it is required the
computation of a numerical flux at the interface between
two elements. In the sliding mesh framework, as the mesh
is not conformal at the interface between moving and fixed
domains, the numerical flux is split in several parts there.

For example, for the cell I in figure 3, node 3 is identified
as an intersection node. We compute the length of the edge
formed by nodes 1 and 3, its normal and the middle node of
this edge (a) (see figure 3). MLS reconstruction is applied
to obtain the MLS-shape functions and their derivatives
for the reconstruction of the variables at the interface of
cell I. For this node, the stencil is comprised by the union
of the stencils of the cell I, and all the fixed elements
formed with node 3. The same rationale is applied to the
segment formed with nodes 2 and 3. Numerical fluxes at
interface are computed using the reconstructed using Taylor
reconstructions at middle nodes a and b .

This procedure must be performed each time step.
In problems related with rotor/stator configurations, the
location of interface is known a priori, and also the cells

next to it in both domains, fixed and moving. Thus, the
computational cost is not greatly increased, since the number
of cells to explore in order to identify the intersection nodes
is reduced.

4 Numerical Examples
In this section we present a first test case of the new

MLS-based sliding mesh technique for the Navier-Stokes
equations. It is a 2D version of the real geometry of a
centrifugal pump. In figure 4 we show the grid used in this
example, and we identify the moving and the static domains,
and also the interfaces and inlet and outlet boundaries. The
moving grid has 16988 elements and fixed grid has 9972
elements.

226 Chapitre 5. Validation de la nouvelle méthode FV-MLS dans la pompe centrifuge NS32

construire la projection 2D de la volute à partir d’une coupe de la volute en deux parties identiques, per-

mettant ainsi d’obtenir le profil 2D et de le projeter dans le plan. La sortie de la volute (sortie en forme de

divergent) est allongée d’une distance de 0.5 fois le diamètre de la roue. Cela nous a permis de construire

un troisième volume fluide nommé tuyau de sortie. De cette façon, la frontière est déplacée une distance

donnée permettant de respecter le critère habituel dans une simulation numérique.

5.3 Modèle numérique

5.3.1 Méthode avec le solveur FV-MLS

Les caractéristiques du modèle numérique utilisé pour modéliser l’écoulement dans la configuration

bidimensionnelle NS32 (figures 5.1 et 5.2) sont décrites en détail. Les sous domaines de calcul sont

maillés en utilisant des éléments triangulaires, le nombre total d’éléments est de 26960 éléments. Ils

sont distribués convenablement dans la partie mobile (roue = 16988 éléments) et les parties fixes (vo-

lute+sortie = 9972 éléments). Les frontières en entrée et en sortie ont 110 et 21 nœuds respectivement,

tandis que les interfaces primaire et secondaire ont 338 nœuds. Les figures 5.3 et 5.4 illustrent le maillage

utilisé pour le domaine de calcul.

Moving Domain 
(rotor)

Static Domain 
(volute+outlet pipe)

Interface rotor/volute
Interface volute/rotor

Inlet

Outlet

0.5 x rotor diameter

FIGURE 5.3 : Maillage de la configuration NS32-2D utilisé par le solveur FV-MLS et le solveur Ansys
Fluent.

Les equations compressibles de Navier Stokes sont résolues par le solveur FV-MLS implicite de

troisième ordre en espace avec une reconstruction de troisième ordre de la matrice masse. Le schéma

Figure 4: Schematic representation of MLS-based sliding
mesh

Mass flow at inlet is ṁ = 99.82 Kg/s. We set a value of
the pressure at outlet boundary of 1.013× 105 Pa. In moving
and fixed walls we impose the no-slip condition. The angular
velocity of the rotor is 900 rpm.

In figure 5 we show the contours of the static pressure for
two different time instants. We observe that the maximum
value of the static pressure is found close to the “beak” of the
volute, and that the pressure is uniform at outlet region.

Figure 5: Contours of static pressure (Pa) in the centrifugal
pump

Figure 6 shows the relative velocity field. Vortical
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structures are formed in the inter-blade area, and they
propagate to the outlet pipe. We observe that the solution is
free of perturbations.

Figure 6: Relative velocity field (m/s)

5 Conclusion
In this work we have presented a new sliding-mesh

technique based on Moving-Least Squares approximations.
This technique allows computations on grids with non-
matching cell-faces. One advantage of this approach is that
it allows to maintain the accuracy of the reconstruction,
avoiding low-order reconstructions at the interface between
moving and fixed domains. Moreover, the same interpolation
method is used in the whole domain. Thus, this new sliding
mesh approach fits naturally in a high-order MLS-based
finite volume framework for the computation of turbulent
flow and acoustic wave propagation into turbomachinery.
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