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An analytical model for the radiation forces acting on an elastic sphere placed in an arbitrary acoustic wave field

is proposed. It provides an expression of the axial and transverse forces without any prescription on the sphere’s

material, radius or location. To illustrate the capabilities and the generality of the model, we selected a Bessel

vortex beam as the incident wave field. Acoustic vortex refers to a type of beam having an helicoidal wavefront.

Such a wavefront is due to a screw type phase singularity, hence the beam has a central dark core of zero amplitude

surrounded by a high intensity ring. We find that an azimuthal force component appears and is capable of rotating

the sphere around the propagation axis. This confirms the transfer of orbital angular momentum from the beam

to the sphere. Furthermore, axial forces may turn negative when appropriate parameters are selected and yield a

dragging force towards the source of the beam acting as a Tractor Beam. In addition to extending the understanding

of the nature of acoustic radiation forces, numerical results provide an impetus for further designing acoustic

tweezers for potential applications in particle entrapment and non-contact manipulation.

1 Introduction
Non-contact manipulation of particles has many current

and potential applications [1]. Pioneer works established the

acceleration and entrapment of particles under radiation pres-

sure in light beams [2]. Since then accurate particle manipu-

lations have been demonstrated with ”optical tweezers” ca-

pable of handling with precision particles ranging from the

nanometric to the micrometric scale [3].

Recent research has been concentrated on single-beam

particle manipulation in the wave field of a tightly focused

transducer [4, 5, 6] and is revealing the ability of ultrasonic

beams to accomplish similar tasks. Due to the acoustic nature

of the beam, the dimensions of the particles of interest and

the corresponding forces increase. Acoustic beams also of-

fer high penetrability in organic tissues and large impedance

contrasts with numerous materials. In this manner, ”acoustic
tweezers” become advantageous and offer extended applica-

tions to optical devices.

The precison of optical tweezers comes from complex

light interference patterns. In order to trap and then rotate

particles, optical vortices were used in early experiments.

These light beams are known to carry orbital angular mo-

mentum that can be imparted to the particle [7]. Further-

more, the central dark core of this vortex structure provides

an entrapment region where the optic or acoustic intensity is

minimum. In acoustics, the analogue vortex beams were syn-

thesized with an array of piezoelectric elements in the linear

and non-linear regimes [9, 10, 11].

Theoretical investigations of the radiation pressure forces

exerted by acoustic beams on spherical particles have only

led to the prediction of the axial force when the sphere is on

the propagation axis [4, 12]. When the radius of the sphere is

much less than the acoustic wavelength, some effort has been

made to evaluate the transverse forces for a sphere displaced

from the axis of an acoustic vortex [13].

In this paper we present a theoretical model to predict the

acoustic radiation forces acting on an elastic sphere in an in-

viscid fluid. The choice of the beam is completely arbitrary
and no restrictions are made on the sphere’s dimension, ma-

terial or location. Since the sphere is allowed to be shifted

from the beam axis, our model can predict the axial but also

the transverse forces both necessary to completely describe

the sphere’s dynamics under acoustic radiation forces. We

apply this analysis to the case of a helicoidal Bessel beam

capable of exerting axial, radial and azimuthal forces on an

elastic sphere. This analysis should be helpful for potential

applications that include particle entrapment and manipula-

tion with single acoustic beams.

2 Method

2.1 Radiation Forces on a sphere in an arbi-
trary beam

The forces that allow trapping and manipulation of par-

ticles in acoustic beams result from the transfer of pseudo

linear and sometimes pseudo-angular momentum from the

beam to the particle. The particle alters the flux of momen-

tum or angular momentum carried by the beam through scat-

tering. The incident field is supposed to propagate in an in-

viscid fluid. We neglect effects due to thermo-viscosity and

the amplitude of emission is weak enough to discard non-

linear effects on the propagation.

To evaluate the radiation pressure, the scattered field has

to be determined. The natural choice of coordinate system

for the scattering problem is spherical coordinates (r, θ, ϕ)

centered on the sphere (Fig.1). For now, we can write the

incident field as the superposition of spherical wave func-

tions Φm
n , each of which is solution of the Helmholtz equa-

tion in spherical coordinates when the harmonic (e−iωt) time

convention is adopted :

(Δ + k2
0)Φm

n (r, θ, ϕ) = 0 (1)

The Φm
n functions build a natural discrete basis of the prob-

lem. Therefore the incident velocity potential φi can be writ-

ten [14] :

φi = φ0

∞∑
n=0

n∑
m=−n

Am
nΦ

m
n ,

φi = φ0

∞∑
n=0

n∑
m=−n

Am
n jn(k0r)Ym

n (θ, ϕ).

(2)

Where φ0 is the real amplitude, k0 is the wavenumber re-

lated to the angular frequency and to the phase velocity by

k0 = ω/c0, Ym
n = Pm

n (cos θ)eimϕ are complex spherical har-

monics (of degree n and order m) and Am
n are the expansion

coefficients for the incident field. The incident wave-field

being physically finite at the origin, the radial dependency is

described by the spherical Bessel function jn(k0r) and the

spherical Neumann functions yn(k0r) are discarded due to

their singularity at r = 0. The Pm
n functions are the asso-

ciated Legendre polynomials.

In addition, the scattered velocity potential may be ex-

pressed as :

φs = φ0

∞∑
n=0

n∑
m=−n

Am
n Rm

n h(1)
n (k0r)Ym

n (θ, ϕ) (3)

Where h(1)
n (k0r) = jn(k0r) + iyn(k0r) is the spherical Hankel

function of the first kind (that respects Sommerfeld’s radi-
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ation condition when r → ∞). As detailed in [15], an ar-

bitrarily shaped beam requires a more general approach to

the scattering problem in comparison to the case of an inci-

dent plane wave. Anyways, it was proved that the scattering

coefficients keep the same expression after applying specific

boundary conditions on the surface of the scatterer. We can

write :

Rm
n ≡ Rn = αn + iβn (4)

Rn are the complex scattering coefficients for each partial

spherical wave and are independent from m. These classic

coefficients are known for a large variety of spheres under

plane wave illumination [16, 17] and only depend on the ex-

citation frequency, the elastic constants of the sphere and the

density of the surrounding medium.

Figure 1: Geometry of the radiation force problem. The

sphere is illuminated by an acoustic helicoidal Bessel beam.

The reference frame (x, y, z) and the spherical coordinate

system (r, θ, ϕ) are centered on the elastic sphere. The

incidence direction of the Bessel beam is described by the

half-cone angle β.

The radiation force acting on the particle altering the flux

of momentum is obtained by integrating the excess of pres-

sure p over the oscillating surface of the particle S (t). It is

defined as an averaged quantity, noted 〈.〉, over the period

T = 2π/ω of the incident field oscillations :

	F = 〈
∫∫

S (t)
p 	dS 〉 (5)

Again detailed in [15], some alternatives exist to over-

come difficulties owed to integration over a moving bound-

ary. The acoustic pressure p is calculated up to the second

order :

p = −ρ0

∂φ

∂t
− ρ0

(	∇φ)2

2
+
ρ0

2c2
0

(
∂φ

∂t

)2
(6)

Where φ is the superposition of the incident and scattered

fields [φ = (φi + φs)e−iωt]. Rather fastidious calculations that

combine Eqs.(2), (3), (4), (5) and (6) lead to the final ex-

pression (7) for the three components of the radiation force

vector 	F in the Cartesian basis centered on the sphere. �
and 	 are the real and imaginary parts respectively and (∗)
designs complex conjugation.

2.2 Incident Beam
We emphasize that the derivation is so far general and

expression (7) can be applied to any incident field having

a representation in the spherical basis. However, an impor-

tant step consists in computing the spherical decomposition

of the incident field to obtain the Am
n coefficients in Eq.(2).

They can be obtained numerically using local approxima-

tions of the beam in the spherical basis [18]. To minimize

numerical errors, it is preferable to use analytical solutions

of the decomposition. Several wave fields possess analytical

expressions for their decomposition coefficients.

A helicoidal Bessel beam is an example of an acoustic

vortex. In cylindrical coordinates (ρ, ϕ, z) (Fig.1), the spa-

tial part of the complex acoustic velocity potential may be

written for a Bessel beam as follows:

φ(ρ, ϕ, z) = φ0Jm(κρ)ei(mϕ+kzz) (8)

Jm is the Bessel function of order m. Sometimes referred to

the topological charge [8], m is an integer whose sign defines

the handedness of the wavefront rotation and its magnitude

determines the pitch of the helix. κ and kz are the radial and

axial wave numbers respectively, related by the usual disper-

sion relation κ2 + k2
z = (ω/c0)2. An exact expression of a

Bessel beam in the spherical basis centered on the sphere ex-

ists [19] :

Am
n = in−m(2n + 1)

(n − m)!

(n + m)!
Pm

n (cos β) (9)

Where in this case β = arcsin(κ/k0) has the geometric inter-

pretation of a conic angle (between the wavevector 	k0 and

the propagation axis in Fig.1) in which the Bessel beam is

expanded in terms of partial plane waves [20]. On Fig.2 we

represented the Bessel beam intensity profile in the (x, y) and

(y, z) planes. They are obtained from the summation in Eq.(2)

numerically truncated up to Nmax = 40. As can be seen, this

beam has a multi-ringed intensity profile that arises from the

radial variation of the Bessel function Jm(κρ). As for any sep-

arated variable solution of the Helmholtz equation, the beam

is invariant along the propagation axis Oz.

When the sphere is located on the beam axis, the trans-

verse forces Fx and Fy vanish by symmetry. To study ra-

dial and sometimes azimuthal forces, the sphere must be dis-

placed off the beam axis. In that case, there is no longer ana-

lytical expressions for the expansion coefficients Am
n . Fortu-

nately, the analytical transformation of spherical wave func-

tions are known under translation or rotation of the initial

coordinate system [21, 22]. Thus, from the decomposition

of the beam in the initial basis it is possible to calculate the

new coefficients Am
n in a rotated or translated basis centered

on the sphere. That is equivalent to displacing the sphere.

3 Results and Discussions
We will now present some numerical results for the ra-

diation force calculation. The procedure is as follows : first

we calculate the scattering coefficients Rn for a given sphere.

They are known for a large variety of materials and depend

of the radius of the sphere a, density ρ′, longitudinal wave

speed cL and transverse wave speed cT . Then Eq.(7) is ap-

plied for different positions of the sphere to obtain the radial,

azimuthal and axial forces calculated in a cylindrical refer-

ence frame (Fρ, Fϕ, Fz). We have paid attention in using nu-

merical values corresponding to typical experimental cases,

the incident medium is taken to be water having a density

ρ0 = 1000kg/m3 and the speed of sound is c0 = 1500m/s.
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Fx = −πρ0φ
2
0

2

∞∑
n=0

∑
|m|<n

Qm
n

[
(Vm

n 	{Am
n Am+1∗

n+1 } − 	{Am
n Am−1∗

n+1 })D1
n − (Vm

n �{Am
n Am+1∗

n+1 } − �{Am
n Am−1∗

n+1 })D2
n

]

Fy = −πρ0φ
2
0

2

∞∑
n=0

∑
|m|<n

Qm
n

[
−(Vm

n �{Am
n Am+1∗

n+1 } +�{Am
n Am−1∗

n+1 })D1
n − (Vm

n 	{Am
n Am+1∗

n+1 } + 	{Am
n Am−1∗

n+1 })D2
n

]

Fz = −πρ0φ
2
0

2

∞∑
n=0

∑
|m|<n

2(n + m + 1)Qm
n

[
�{Am

n Am∗
n+1}D2

n − 	{Am
n Am∗

n+1}D1
n

]
(7)

where D1
n = αn + αn+1 + 2(αnαn+1 + βnβn+1) , D2

n = βn+1 − βn + 2(βn+1αn − αn+1βn)

And Qm
n =

2(n + m)!

(2n + 1)(2n + 3)(n − m)!
, Vm

n = (n + m + 1)(n + m + 2)

z/λ
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λ
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Figure 2: Intensity profiles of the incident Bessel Beam in

the (y, z) and (x, y) planes. Lengths are in units of the

acoustic wavelength λ

The incident wave has a pressure amplitude P0 = 0.1 MPa

and the driving frequency is f = 1MHz. Under these condi-

tions, the wavelength is λ = 1.5mm.

3.1 Axial force on spheres in a Bessel Beam
First we will present examples of the axial force calcula-

tion Fz. The incident wave field is a Bessel beam having a

half-cone angle β = 40◦ and a topological charge m = 1.

In Fig.3 we show the axial force as a function of the di-

mensionless radius a/λ of two different spheres. It is clear

from the comparison with a rigid sphere (typically the case

of aluminum) that when elasticity is taken into account (ny-

lon case) the force exhibits intense peaks. Those resonances

in the a dependency of the scattering coefficients Rn are as-

sociated to weakly damped waves guided by the surface of

the sphere [12]. The resonance peaks are strongly dependent

on the topological charge m and the half-cone angle β (data

not shown).

In Fig.4, for three different values of the half-cone angle

β we depict the axial force Fz for a polystyrene sphere as a

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

−6

a/λ

F
z[N

]

Nylon
Aluminium

Figure 3: Axial force (Newtons) exerted by a Bessel beam

with topological charge m = 1 on Nylon and Aluminum

spheres as a function of the dimensionless radius a.

function of its radius, a. It shows that for β = 60◦ and 70◦
there is a region for a where Fz < 0 : 0.34λ ≤ a ≤ 0.39λ and

0.28λ ≤ a ≤ 0.32λ respectively. That means that the force

is directed towards the source of the beam. In [12] similar

calculations had predicted this unexpected negative axial ra-

diation force for elastic, rigid and liquid spheres on the axis

of Bessel beams. Nevertheless, the potential application that

consists in using Bessel beams as Tractor beams relies on

both negative axial forces and the transverse stability of the

sphere that is still unexplored.

0.1 0.2 0.3 0.4 0.5

0

2

4
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x 10
−7

a/λ

F
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]

β = 50°

β = 60°

β = 70°

Figure 4: Axial force (Newtons) exerted by a Bessel beam

with topological charge m = 1 on a polystyrene sphere as a

function of the dimensionless radius a. Three different

values of the parameter β are selected.
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3.2 Transverse forces on a sphere
Figure 5 shows the radial force Fρ as a function of the

distance of displacement ρ for selected parameters that corre-

spond to the negative extrema in the dashed and dotted curves

in Fig.4 : (a, β) = (0.35λ, 60◦) and (a, β) = (0.32λ, 70◦). A

radial equilibrium position is obtained when both Fρ(ρ) = 0

and the slope is negative since for any displacement of the

sphere an opposite force appears. For β = 70◦, we see that

the sphere is not trapped in the core of the vortex so it will

not be dragged up the propagation axis. The only equilib-

rium position in this case is located at a distance ρ = 0.48λ.
Contrarily, for β=60◦, we see that the sphere can be trapped

and maintained in the central core, meanwhile it is dragged

towards the source because of the negative axial force (Fz =

−21.5 nN).

Figure 6 shows that an azimuthal force also appears in

the transverse plane. The sphere will start spinning around

the beam axis due to the azimuthal forces. This confirms the

transfer of pseudo-angular momentum from the beam to the

sphere.

0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3
x 10

−7

ρ/λ

F
ρ[N

]

β=60°

β=70°

Figure 5: Radial force (Newtons) exerted by a Bessel beam

with topological charge m = 1 on a polystyrene sphere with

parameters β=60◦ and a=0, 35λ (dashed curve). The dotted

curve is for β=70◦ and a=0.32λ. Both cases correspond to

the negative extrema in Fig.4.

0 0.5 1 1.5
−5

0

5

10

15
x 10

−8

ρ/λ

F
φ[N

]

β=60°

β=70°

Figure 6: Azimuthal force (Newtons) same sphere and beam

parameters than in Fig.5.

As expected, the transverse behavior will also depend on

the sphere’s material. In that matter, for a radius a = 0.3λ
and a beam parameter β = 40◦, a polystyrene sphere will

be urged away from the beam core (Fig.7) meanwhile the

aluminum sphere will strongly be attracted towards the prop-

agation axis (Fig.8). This is in agreement with King’s ini-

tial work on radiation forces on spheres in a standing plane

waves [23]. He had predicted that light spheres (in compari-

son to the density of the propagation medium) were attracted

to pressure anti-nodes and dense spheres to pressure nodes.

In fact, the Bessel beam intensity profile (Fig.2) can be un-

derstood to have a collection of nodes and anti-nodes in the

radial direction.

x/λ

y
/λ

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 7: Transverse stability of a polystyrene sphere (with

a = 0.3λ) in the field of a Bessel beam with topological

charge m = 1. The 2D grey-scale represents the beam’s

intensity profile.
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Figure 8: Transverse stability of an aluminum sphere (with

a = 0.3λ in the field of a Bessel beam with topological

charge m = 1.

4 Conclusion
In this work, we derived an expression for the three di-

mensional radiation force on a sphere in an inviscid fluid. To

our knowledge, for the first time in acoustics it is possible

to analyze the axial and transverse stability of an arbitrarily

located sphere. There is no restrictions on the sphere’s di-

mension or material. Eq.(7) is sufficiently general and can

be applied to any incident wave field that can be expanded in

the spherical basis centered on the sphere. We remind that

all complications owed to thermo-viscosity were neglected
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in this work and consequent errors may arise when the ra-

dius of the sphere is not much larger than the thickness of

the thermal-viscous boundary layer [24]. However, for many

potential applications these effects are negligible.

In order to illustrate our model, we concentrated our ef-

forts on calculating the trapping efficiency of incident heli-

coidal Bessel beams. It was shown that important peaks in

the axial force arise when an elastic nylon sphere was con-

sidered. As it was initially observed in [12], for specific high

values of the β parameter a surprising reversal of the axial

force may lead to beams that can pull the sphere towards the

acoustic source. Here we proved that situations with nega-

tive Fz are not systematically associated to a radial attracting

force towards the propagation axis. This last condition is re-

quired in order to investigate the potential use of a Bessel

beam as a tractor beam. The spheres can rotate around the

beam axis due to the transfer of orbital angular momentum

through scattering by a the sphere off-axis.

We proposed a general model that should be helpful to

elaborate acoustic devices for non-contact manipulation of

small objects. ”Acoustic tweezers” have promising applica-

tions in small particle entrapment and manipulation includ-

ing in vivo applications.
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