
Recent developments in Code Aster to compute FRF
and modes of VEM with frequency dependent properties

N. Merlettea, E. Pagnaccob and A. Ladierb

aTANGENT’DELTA, 1 rue Adolphe Robert, 58200 Cosne Sur Loire, France
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This paper tackles the way how advanced capabilities are introduced in Code_Aster to take into account 
frequency dependent properties of viscoelastic materials. Computing of frequency response functions and modes 
of vibration (real or complex) is addressed. Having frequency dependent modes is a step forward for the modal 
projection method and for model updating with an experimental modal basis as a reference. An iterative method 
is proposed and implemented in Code_Aster in order to compute frequency dependent modes. The new 
capabilities are then compared with the standard approaches in the case of an automotive windshield, where the 
viscoelastic behavior of the polyvinylbutyral which composes the laminate glass is considered. 

1 Introduction 
ViscoElastic Materials (VEM) are intensively used to 

solve NVH issues. Damping pads and anti flutter products 
reduce the structure borne noise. Sealants and absorbing 
materials prevent the air borne transmission. Adhesives are 
common solutions to assemble parts. Whereas VEM are 
well known, the finite element analysis of their dynamic 
behavior is not straightforward. Most of the time, the use of 
a finite element software requires to simplify VEM as 
elastic materials. This simplification is not always the 
obvious thing to do and may lead to inaccurate results. 

The first part of this paper addresses the finite element 
analysis of structures comprising VEM with frequency 
dependent dynamic properties. Conventional approaches 
are discussed and a method is proposed to overcome their 
limitations. The method computes frequency dependent 
modes using an iterative algorithm. The way how these 
modes can be used to improve the modal projection method 
is described. Implementation in Code_Aster is explained. 

The second part describes the application of the method 
to the study of an automotive laminate windshield 
comprising a polyvinylbutyral material with a strong 
frequency dependent viscoelastic behavior. 

2 Finite element analysis 

2.1 State-of-the-art 
From a simulation point of view, the frequency response 

of a structure comprising at least one VEM is obtained by 
solving the dynamic equilibrium equation: 

 )()(][)]([ 2* FuMK , (1) 

with )]([ *K , the complex stiffness matrix as: 

 )]([)]([)]([ * KiKK . (2) 

The frequency dependence of the matrix comes from the 
use of frequency dependent complex moduli to represent 
viscoelastic behaviors [1].  

In many finite element codes, solving the system of Eq. 
(1) is not conventional because it needs to realize the 
stiffness matrix for each frequency step and to have 
computing procedures which are able to deal with 
frequency dependent matrices. For instance, NASTRAN-
like codes propose only a direct response approach and it is 
not possible to define more than one frequency dependent 
behavior. This limitation is incompatible with today's 
structures comprising several different VEM. Concerning 
Code_Aster, there is neither possibility to define a 
frequency dependent behavior, nor to solve Eq. (1) without 
any extra-development. 

The direct response approach consists in solving Eq. (1) 
for each frequency step as: 

 ],0[)(][)]([)( max
12* FMKu . (3) 

This method has the advantage of computing the exact 
response of the system. But, as it is necessary to compute 
and inverse a complex matrix at each frequency step, the 
computing time can become prohibitive for industrial 
structures with several million degrees of freedom. 

A few studies [2-4] have shown the interest to solve Eq. 
(1) with dedicated modal response methods in order to 
improve the computational efficiency while maintaining the 
accuracy of the results. Modal response methods compute 
frequency responses by projecting the system of Eq. (3) on 
a modal basis ][T , with the assumption: 

 )(][)( qTu . (4) 

The projection of the model on the considered basis 
leads to a low order model, that decreases significantly the 
number degrees of freedom and consequently the 
computing time of frequency responses: 

 )(][]][[][])][([][)( 12* FTTMTTKTq TTT . (5) 

Using properties of elastic models (real and frequency 
independent stiffness matrix), the standard basis of the 
popular spectral decomposition method combines normal 
modes solving of the classical eigenvalue problem: 

 0][][ 2
rr MK  (6) 

and a static correction to ensure a correct representation of 
the low frequency contribution of truncated high frequency 
normal modes [5]. Classically, ][T  is composed by the 

normal modes between .0  and a minimum of max5.1 . 
However, frequency dependence of the VEM dynamic 

properties prevents from using the spectral decomposition 
method, because the modal basis, ][ ,1 Nr , is only valid 

at the frequency ref , for which it has been computed. In 
practice, it has been demonstrated [3] the validity domain 
of the basis can be extended in a range around the 
frequency ref . If the VEM of the model give increasing 
moduli with respect to the frequency, the use of 

maxref  will lead to a larger validity domain than for 
any other frequencies. Unfortunately, the validity domain of 
the basis may not extend over all the frequency range of 
interest. Inaccurate results may be obtained. 
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2.2 Computation of frequency dependent 
modes 

For a frequency dependent real stiffness matrix, 
)]([K , the eigenvalue problem of Eq. (6) is written as: 

 0)(][)()]([ 2
rr MK , (7) 

where the eigenfrequency, )(r , and the eigenvector, 

)(r , are frequency dependent too. For a fixed, given 

frequency, p , such eigensolutions can be obtained 
by solving the standard problem of Eq. (6). Hence, the 
proposed method for solving the frequency dependent 
problem of Eq. (7) consists in using an iterative algorithm 
searching for: 

 ],[)( 21pppr , (8) 

where 1  and 2  are respectively the lower and the upper 
cut-off frequencies of the eigenproblem and  is the 
convergence criterion of the iterative algorithm. First, for 

1p , the stiffness matrix is realized and the 

eigenproblem of Eq. (6) is solved. Then, p  is updated by 

taking the value of the thn  eigenfrequency for which: 

 pNrpn ,1min . (9) 

Next, the stiffness matrix is realized for the new value of 

p  and the eigenproblem of Eq. (6) is solved again. The 
iterations will not stop while 

  pn . (10) 

When the procedure converges, n  and n  are 
extracted to form the frequency dependent eigensolutions of 
Eq. (7) and the iterative algorithm will continue using 

1np  as the guess value to compute the next 
eigensolution. Finally, the algorithm will stop when 

2p . It means all the frequency dependent 

eigensolutions have been computed between 1  and 2 . 
The computing time of the proposed method is 

classically driven by the number of frequency dependent 
modes to be computed, the number of degrees of freedom 
of the model and the value of the convergence criterion, . 
It is also dependent on the number of normal eigenvalues 
which are computed as solutions of Eq. (6) at each iteration. 
Having all the eigenvalues between 1  and 2  for each 
iteration is not necessary and could lead to prohibitive 
computing times. In theory, a minimum of two eigenvalues 
may be sufficient to run iterations: n  to update p  as 

described in Eq. (9) and 1n  to continue when the 
procedure converges. In practice, this minimum number of 
eigenvalues will be determined by the capabilities of the 

numerical solver for Eq. (6). It will be discussed for 
Code_Aster in section 2.4. 

The proposed method can be naturally extended to the 
study of damped structures comprising VEM. The 
frequency dependent eigenvalues and eigenvectors are then 
computed as solutions of the following problem: 

 0][)]([ 2*
rrr MK , (11) 

with 2
,1 Nr  the complex eigenvalues such that 

rrr i.1~22  with r  the modal structural 

damping factor, and Nr ,1 , the associated complex 
modes. In this case, Eq. (8) is rewritten as: 

 ],[)(~
21pppr , (12) 

with )Re(~
rr , the corresponding eigenfrequency 

in a structural damping model [6]. p  will be updated by 

taking the value of the thn  eigenfrequency for which: 

 pNrpn ,1
~min~ . (13) 

Computing frequency dependent real or complex modes 
should be a step forward for comparison with experimental 
modal bases. Indeed, when structures comprising VEM are 
tested, their frequency dependent behaviors are physically 
measured. The proposed method could help to validate or to 
update finite element models with experimental references. 

2.3 Improvement of the modal projection 
method 

The frequency dependent modes can be used to form the 
basis of the modal projection method for response 
computations of VEM.  They will extend the validity 
domain of the basis over all the frequency range of interest. 
In combination to a static correction, either real modes will 
be used for weakly damped structures, or complex modes 
for highly damped structures [3]. The static correction will 
be determined with the stiffness matrix realized for 0 . 
Real modes will be preferred to reduce computing times, 
since numerical solvers are much more efficient in this 
case. But for highly damped structures, the projection base 
composed with such modes may be insufficient to obtain 
accurate frequency responses. This can be improved using 
the modified Modal Strain Energy (MSE) method to reduce 
the errors [7]. So, frequency dependent real modes, 

)(r , become solutions of a modified form of Eq. (7) 
in order to take into account the damping matrix (imaginary 
part of the stiffness matrix) as: 

 0)(][)()]()[()]([ 2
rr MKK .(14) 

)]([K  and )]([K  are defined by Eq. (2) and )(  
is calculated by the following empirical formula: 
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)](trace[
)](trace[)(

K
K

, (15) 

where the trace for an NN  matrix is defined as: 

 
N

j
jjAA

1
]trace[ . (16) 

In the iterative algorithm, the use of the modified MSE 
method leads to calculate )( p  for each iteration and to 
search for the solutions of the resulting eigenvalue problem: 

 0][)]()[()]([ 2
rrppp MKK . (17) 

Another method to improve the real modes could be the 
use of residual modes whose purpose is to represent the 
damping of VEM in the modal projection basis [8]. The 
coupling with frequency dependent modes has not yet been 
investigated. 

2.4 Implementation in Code_Aster 
The approach to frequency dependent modes described 

above has been implemented in Code_Aster via a macro 
script 

uses standard commands existing in Code_Aster for the 
conventional modal method. Python codes have been added 
for the new developments: 

 definition of a frequency dependent behavior, 

 computation of frequency dependent modes by the 
iterative algorithm, 

 frequency response computation with realization of 
the stiffness matrix at each frequency step. 

In the iterations, modes are computed as solutions of 
Eq. (6) via the standar
command. Ten eigensolutions are searched around p  for 
each iteration. This number is a good compromise between 
securing the convergence of the iterative algorithm and 
limiting the total computing time. 

The user can define several VEM with different 
behaviors and choose the method to compute the responses 
(direct, modal with constant real modes or modal with 
frequency dependent modes). The frequency dependent 
modes can be obtained using the modified MSE or not. At 
this time of the implementation, it is possible to compute 
frequency dependent complex modes, but they cannot be 
used as a modal basis for response computation because of 
existing programming locks in Code_Aster. This will be 
investigated in further works. 

3 Industrial application 
The frequency dependent modes approach described 

above and implemented in Code_Aster was applied to an 
automotive laminate windshield comprising a 
polyvinylbutyral material between two glass layers. The 
objectives were to validate the proposed approach and to 
compare with the standard computational methods for both 
modes and responses. 

3.1 Description of the model 
The thickness of the polyvinylbutyral was 0.76 mm. The 

thickness of each glass layer was 2.1 mm. The finite 
element mesh was realized with 1152 shell elements for the 
glass and 1728 solid elements for the polyvinylbutyral 
(three layers in the thickness). Shell and solid elements 
were linked with coincident nodes (compatible meshes) and 
an offset is introduced to define each shell mid layer. The 
aim was to compute velocity responses of the windshield 
for an unitary excitation up to 1000 Hz. The perimeter of 
the windshield was clamped. Excitation and responses were 
defined on the upper glass layer, normal to the windshield 
plane. Normal velocities were averaged using the responses 
for 18 nodes as shown in Figure 1. 

 

Figure 1: FE model of the windshield (red arrow for 
excitation force, black arrows for responses). 

The polyvinylbutyral was considered as an isotropic 
VEM and the glass as an isotropic 
elastic material with a constant loss factor of 1%. The 
dynamic behavior of the VEM was represented by the 
complex shear modulus extracted from the nomogram in 
Figure 2. 

 

Figure 2: Reduced frequency nomogram of a standard 
polyvinylbutyral [9]. 

3.2 Comparison of modal bases 
With the objective to compute responses up to 1000 Hz, 

modal bases were determined between 0 and 1500 Hz. 
Constant real modes were computed using the standard 
Sorensen  method implemented in Code_Aster [10], for a 
stiffness matrix realized at the frequency of 1000 Hz. Using 
the proposed developments, frequency dependent modes 
were searched with an accuracy of 0.01 Hz, i.e. 01.0
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in Eq. (8). Computing times are given in Table 1 as ratios to 
the time needed to have the constant real modes. 

Table 1: Computing times of modal bases with Code_Aster. 

Frequency 
dependent Real/Complex Modified 

MSE 
Computing 

time 

No Real No 1.0 

Yes Real No 20.3 

Yes Real Yes 22.5 

Yes Complex  28.7 

 
Table 1 shows the extra cost of the modified MSE 

method is negligible compared to the total cost of the 
frequency dependent real modes. 119 constant real modes 
were computed between 0 and 1500 Hz, whereas  
115 frequency dependent modes (real or complex) were 
found. These four additional modes appear because of the 
approximation of the VEM as an elastic material. 

Twelve frequency dependent real modes and the 
corresponding constant real modes are compared in Table 2 
according to their frequencies. 

Table 2: Comparison between twelve pairs of modes. 

 Eigenfrequency (Hz)   

Mode 
order 

Frequency 
dependent 
real modes 

Constant 
real modes 

Shift 
(Hz) 

1 137.39 139.13 1.74 

10 329.57 333.67 4.10 

20 476.87 482.87 6.00 

30 619.82 626.68 6.86 

40 731.06 737.75 6.69 

50 843.82 848.55 4.73 

60 942.78 944.7 1.92 

70 1053.29 1052.52 -0.77 

80 1149.67 1147.13 -2.54 

90 1248.65 1243.64 -5.01 

100 1338.12 1330.49 -7.63 

110 1443.61 1432.49 -11.12 

 
Modes were chosen to be spread over the frequency 

range. Matching between modes was validated using a 

mass-weighted Normalised Cross Orthogonality (NCO) 
criterion [6]. 

Neglecting the frequency dependence leads to errors of 
several Hertz in the prediction of the eigenfrequencies of 
the windshield. The error is reduced around the frequency 
of 1000 Hz, i.e. the one used to realize the stiffness matrix 
for the computation of the constant real modes. The NCO 
values are higher than 0.98 for all paired modes in the 
frequency range of interest. Therefore, the stiffness of the 
polyvinylbutyral is not so influent on the modal shapes of 
the windshield. 

3.3 Frequency response functions 
A series of frequency response calculations using 

Code_Aster was performed via direct and modal methods 
involving the above developments. The reference was 
defined as the direct method using frequency dependent 
properties of the VEM. 

The first study involved the comparison between the 
reference and the conventional modal method using 
constant real normal modes and constant properties. The 
modal method used constant values of the shear modulus 
and the loss factor of the polyvinylbutyral, calculated as 
averages between 0 and 1000 Hz. The resulting responses 
are plotted in Figure 3 and indicate severe errors of the 
modal approach. 

 

Figure 3: Comparison with the reference of the normal 
mode projection method using a constant stiffness matrix. 

It is obvious the frequency dependence of the 
polyvinylbutyral must be taken into account in response 
computations of the windshield. In the following, all 
harmonic response computations have been performed with 
realization of the stiffness matrix at each frequency step for 
computing the response given by Eq. (5). 

Hence, the second study is performed from a frequency 
dependent stiffness and a modal basis composed by 
constant real modes and a static correction. Static correction 
was computed for the stiffness matrix realized at 0 Hz, 
whereas modes were computed for the matrix realized at 
1000 Hz. The resulting response is compared with the 
reference in Figure 4, showing a great improvement 
compared to the first study, which does not project the true 
frequency dependent stiffness matrix on the modal basis but 
a constant stiffness matrix. 
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Figure 4: Comparison with the reference of the modal 
approach using true frequency dependent stiffness matrix, 

constant real modes and static correction. 

Compared to the reference, large differences in 
amplitude are observed at all the resonant peaks up to 700 
Hz with a maximum difference of 4 dB at the first resonant 
peak. This illustrates the constant real modes are not 
sufficient in modeling the polyvinylbutyral. 

A third study was performed to assess the capability of 
the frequency dependent modes in representing the 
viscoelastic behavior of the polyvinylbutyral. Responses 
were computed by the proposed approach using two 
different modal bases. One was composed by frequency 
dependent real modes. The other one was composed by 
frequency dependent beta-modes which were obtained by 
the modified MSE. In both cases, modes were combined 
with a static correction which was computed again for the 
stiffness matrix realized at 0 Hz. The resulting responses 
are compared with the reference in Figure 5. 

 

Figure 5: Comparison with the reference of the proposed 
approach using frequency dependent modes. 

Both modal bases reduce strongly the differences with 
the reference. The differences are lower than 1.5 dB with 
the real modes, and lower than 0.5 dB with the beta-modes 
in all the frequency range. This confirms the importance of 
the frequency dependent modes in modeling viscoelastic 
materials with strong frequency dependent behaviors. 

In terms of computational efficiency, the direct solution 
took 26 minutes whereas the modal approach required 10 
minutes with the real modes and 12 minutes with the beta-
modes. This improvement in computation time may be 

larger for models with a greater number of degrees of 
freedom. 

4 Conclusion 
An iterative method for computing frequency dependent 

modes of structures with VEM has been developed and 
implemented in Code_Aster. These modes can be used as a 
modal basis for frequency response calculations. They will 
extend the validity of the basis over all the frequency range 
by taking into account the frequency dependence of the 
stiffness matrix. 

Capabilities of Code_Aster have been improved by 
implementing a macro command to define VEM with 
frequency dependent behaviors and compute resulting 
frequency responses via a direct or a modal approach. 

A performance study was carried out to demonstrate the 
efficiency of the frequency dependent modes in modeling 
an automotive laminate windshield comprising a 
polyvinylbutyral material with a strong frequency 
dependent viscoelastic behavior. 
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