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Abstract 
The problem of estimating the power of signals impinging an array of sensors when the arrival directions are 
known is presented. It is assumed that the signal field at the array is comprised of P independent plane-wave 
arrivals from known directions. In practice the directions of arrival are rarely known exactly, however this 
difficulty can be overcome by using the standard MUSIC (Multiple Signal Classification) algorithm, which 
constitutes an angular pseudo-spectrum and an indicator of directions of arrival of different signals. The problem 
then reduces to the estimation of the signal powers from each of the P directions. Five estimators are presented 
in this communication. The conventional beamformer, the Capon estimator, the robust Capon estimator, the 
covariance vector estimator and the least squares fit estimator of the observed cross-spectral matrix of the array. 
Numerical and experimental results are presented showing that the performances of the covariance vector 
estimators are better than other estimators.  

1 Introduction 
Arrays of sensors are used in many fields to detect 

signals, to resolve closely spaced targets, to estimate the 
bearing, the position, the strength and other properties of 
radiating sources whose signals arrive from different 
directions [1-3]. The emitted source of energy can be 
acoustic (sound-waves), electro-magnetic (radio-waves), 
vibrations (signals of geophysical nature), and so on, and 
the receiving sensors may be any transducers that convert 
the received energy to electrical signals. The types of 
sensors used to detect these signals differ accordingly: 
microphones for acoustic signals, electromagnetic antennas 
for radio waves, accelerometers/seismometers for the 
detection of earthquakes. In all that follows, only idealized 
arrays of receiving sensors are considered. The other 
assumptions are fairly conventional: the sources are point 
emitters situated in the far field of the array, the 
propagation medium in not dispersive and the waves 
arriving at the array are planar. Furthermore, we assume 
that both the sources and the sensors are in the same plane 
and that the signals and noise are random processes with 
zero mean, stationary and statistically independent. 

Processors that are commonly used are the conventional 
and the adaptive beamformer and the usual method of 
processing is to form a number of closely spaced receiver 
beams in fixed directions and to measure the power in each 
beam, the strength and direction of arrival of a signal may 
then be estimated by interpolation between beams. The 
approach taken here is to assume that the signal field at the 
array is comprised of P independent plane-wave arrivals 
from P known directions and in practice, of course, the 
directions are rarely known exactly, however this difficulty 
can be overcome by using the standard MUSIC (MUltilpe 
SIgnal Classification) algorithm [1] which constitutes an 
angular pseudo-spectrum and an indicator of directions of 
arrival of different signals. The problem then reduces to 
estimating the signal powers from each of the P directions.  

This study focuses on developing estimators which are 
simple to implement on line and which seek to identify the 
distribution of signal power generated by acoustical 
sources.  

2 Signal representation 
Consider a receiving array with N sensors and assume 

that P acoustical plane waves at frequency f  impinge upon 
the array from P different known directions }{ p1 θ,...,θ . 

The signals observed at the outputs of the sensors array are 
represented by the N-dimensional vector [1-3] 

               x(t) = ∑
=

P

i 1
si(t) a( iθ ) + n(t)                          (1) 

where si(t) is the complex amplitude of the ith source, it is a 
zero-mean complex random variable. Its variance, denoted 
pi, characterizes the signal power of the ith source which we 
wish to estimate 

                   pi = Var[si(t)]= E[si(t) si(t) 
*]                          (2) 

Here, E[ ] is the expectation operator and the superscript * 
represents the complex conjugate. The direction of arrival 
of the ith signal source is represented by the N-dimensional 
complex vector a( iθ ) and n(t) represents the additive 

sensor noise vector. This noise does not correspond to a 
wavefront arrival and is a background noise generated 
internally in the instrumentation. The noise is assumed to 
be spatially white (uncorrelated from sensor to sensor) and 
the same power level is present in each receiver. With these 
assumptions, the covariance matrix for the noise alone is 
Rn=E[n(t)n(t)H]= pn I, where pn is the noise power, I the 
(NxN) identity matrix and the superscript H denotes the 
Hermitian transpose operation. Equation (1) may be 
rewritten in the matrix form 

  

   x(t)= A s(t) + n (t)       t ∈ }{ T21 t....,,t,t        (3) 

A is the (NxP) array manifold matrix containing the 
manifold vectors for different sources as its columns,  
A=[a( 1θ ) ,…, a( Pθ )].  At the frequency of interest, xi(t) is 

the complex signal component from the ith receiver and A is
a known matrix, each column of which is a source direction 
vector.  For any single plane wave arrival, the outputs from 
the N individual receivers will differ in phase by an amount 
determined by the geometry of the array and the arrival 
direction. In other words, the elements Aqr of the matrix A
are known functions of the signal arrival angles and the 
array elements locations. Thus, one has Aqr = exp(j φ qr) 

where φ qr is the phase of the signal at the qth receiver from 

the rth source, measured relative to some arbitrary reference 
point. s(t) is the P-dimensional vector, the components of 
which are the complex amplitudes of the sources. It can 
readily be seen that the output signal from the qth sensor 
may be written as      

            xq(t) = ∑
=

P

1r
Aqr sr(t)+  nq(t)                             (4) 

Since the P arrivals are by assumption independents, the 
source covariance matrix is given by  

              Rs = E[s(t)s(t)H] = diag(p1,… ,pp)                    (5) 
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and the diagonal elements are the powers of the sources 
from the P directions which we wish to estimate. The 
spatial covariance matrix of the receiver outputs can be 
expressed, for signals uncorrelated of each other and of 
noise, as     

               R = E[x(t)x(t)H] = A Rs A
H + Rn                    (6) 

In practice, the spatial covariance matrix is estimated by a 
finite number of time domain samples (snapshots) and an 
estimate of R is used. We can now derive a variety of 
processors to estimate the strengths of P independent 
signals arriving at array of N sensors, when the arrival 
directions are known.  

3 Power estimation of acoustical 
sources 

3.1 The conventional beamformer 
The conventional beamformer, also called the ’’time 

delay and sum’’ beamformer, consists of a system of delay 
and sum networks which are designed to make the signals 
from the beamformer direction in phase at each sensor. The 
acoustical sources amplitude is estimated from the sensor 
data which is formed by the output data vector x(t).  The 
usual approach is to find a matrix M, such that s(t) = M x(t), 
and for a conventional beamformer (a conventional phased 
array) the equation is [3] 

                       sCB(t) = 
N

1
AH x(t)                                (7)                                                              

A power estimate for the signals can be found by forming 
the covariance matrix  

              RsCB=E[sCB(t)sCB(t)H]= 
2N

1
AH R A             (8)                                                 

and the strength of the ith source estimated by the 
conventional beamformer is  

                  piCB  = 
2N

1
a( iθ )H R a( iθ )                     (9) 

However, this leads to a biased estimate as can be seen by 
substituting (6) into (8)  

                   RsCB = 
2N

1
AH(ARsA

H + Rn)A              (10)                                                   

So unless AHA = NI and Rn = 0, neither of which is 
generally the case, then the estimate will be biased. 

3.2 Adaptive beamformers 
The minimum variance distortionless response criterion 

to estimate the signal power is a class of adaptive 
beamforming technique widely used in array processing 
and is also called the standard Capon beamformer [2]. The 
technique selects a weight vector w of the array element 
outputs in such a manner that the power out of the 
beamformer is minimized, while the response in the 
direction of the desired signal (the signal coming from the 
ith source) is constrained to unity. The constraint ensures 
that the signal power coming from the ith source will be 
reproduced in undistorted form in the processor output. 
Thus, this adaptive array tries to eliminate as best it can all 

the signals received at the sensors except the signal coming 
from the ith wanted source. The weight vector w is selected 
so as to minimize the output power of the array 

    
w

min wRwwxxw HHH     ]E[ =                              (11)                  

 subject to the constraint         wH  a( iθ )=1                    (12) 

Using Lagrange’s method we minimise the power output 
subject to this constraint by defining a cost function  

              g(w) = wHRw+ λ (1- wH  a( iθ ))                  (13) 

where λ is the Lagrange multiplier. Differentiating (13) 
with respect to the weight vector w and equating to zero 
gives the optimum weight vector as  

                               

                 w = R-1a( iθ )(a( iθ )HR-1a( iθ ))-1              (14) 

and the power of the ith source estimated by the standard 
Capon beamformer is 

                   piSCB  =   
)()( 1

1

ii θaRθa H −                 (15) 

The standard Capon beamformer has better resolution 
than the conventional beamformer provided that the array 
steering vector corresponding to the signal of interest is 
accurately known. However, the performance of this 
traditional adaptive beamformer can degrade seriously in 
practice when errors exist in the signal of interest steering 
vector, which may be due to look direction error, array 
sensor position error, and small mismatches in the sensor 
responses. In such cases the signal of interest might be 
mistaken as an interference signal and might be suppressed. 
A robust Capon beamforming algorithm, which is a natural 
extension of the standard Capon algorithm, is presented to 
overcome this difficulty. In the robust Capon beamforming 
algorithm we suppose that a( iθ ) is the true direction vector 

of the ith source, a ( iθ ) is the assumed direction of the ith

source and we consider that a( iθ ) is in the vicinity of 

a ( iθ ). This can be expressed mathematically by the 

following inequality : εii θaθa ≤− 2
)()( , where ε is a 

bound controlling the uncertainty in the assumed look 
direction. To derive the robust Capon beamforming 
algorithm we use the reformulation of the standard Capon 
beamforming problem to which we append the previous 
inequality  

                            
w

min wRwH

                           (16)                    

subject to the constraint      εii θaθa ≤− 2
)()(          (17) 

The optimization problem can be rewritten as the following 

form           
a

min )()( 1
i

H
i θaRθa −

                              (18) 

subject to the constraint (17). We consider the solution on 
the boundary of the constraint set and we reformulate the 
optimization problem as the following quadratic form with 
a quadratic equality constraint 

                          
a

min )()( 1
i

H
i θaRθa −

                       (19) 
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subject to                  εii θaθa =−
2

)()(                    (20) 

This problem can be solved by using the Lagrange 
multiplier method which is based on the cost function  

   f(a) = a( iθ )HR-1a( iθ ) + λ ( εii θaθa −−
2

)()( )       (21) 

Differentiating (21) with respect to a( iθ )and equating to 

zero gives the optimal solution 

      a( iθ )= a ( iθ ) – U (I+ λ Γ )-1 UH a ( iθ )                (22) 

where U and Γ are (NxN) matrices containing the 
eigenvectors and eigenvalues of the covariance matrix R
and λ is the Lagrange multiplier. Using (22) in the equality 
constraint of (20) the Lagrange multiplier is obtained as the 
solution to the constraint equation  

                         εi
H θaUΓIU =λ+

2
1- )() (            (23) 

The signal power estimation of the ith source using the 
robust Capon beamformer is then [4] 

piRCB =
)()2-()(

1

1212
ii θaUΓΓλIλΓUθa HH −− ++

  (24) 

     The standard Capon beamformer is an optimal spatial 
filter that maximizes the signal to noise ratio, provided that 
the true covariance matrix and the array steering vector are 
accurately known. However, the covariance matrix can be 
inaccurately estimated due to limited data samples and the 
knowledge of the array steering vector can be imprecise due 
to look direction error, imperfect array calibrations, gain 
and phase errors in the sensors. The robust Capon 
beamformer can be used in such situations for signal power 
estimation and source location as shown in examples given 
in this communication. Another estimator using the 
covariance vector of signals is presented in the next section. 

3.3 Signal power estimation by the 
covariance vector 

Since we are interested in the signal powers, the 
covariance matrix of the data contains all the information 
about these signal strengths. We assume that signals from 
different directions are uncorrelated. From equation (4) the 
correlation between sensor k and l is then  

             rkl = E[xk x
*

l] = ∑
=

P

1i
pi Aki A

*
li + pn klδ            (25)    

The sensor noise power on each sensor is constant and 

equals pn and klδ  = 1 for k=l and zero otherwise. Equation 

(25) may be split into real and imaginary components as 

               Re(rkl) = ∑
=

P

1i
Re (Aki A

*
li ) pi + pn klδ             (26) 

                 Im(rkl) = ∑
=

P

1i
Im (Aki A

*
li ) pi                    (27) 

                                              
Of the 2N2 equations represented by (26) and (27) only (N2

–  N +1) equations are independent, since one has : 
  

Re(rkl)=Re(rlk); Im(rkl)=-Im(rlk); Re(rkk) = Re(rll) for k ≠ l
and Im(rkk)=0. 
    
Equations (26) and (27) may then be written in the form  

                            r = B p                                            (28) 
                                                      

where r, B and p are reals; r is the (N2 –  N +1) vector which 
contains the real and imaginary components of  }{ klr  and 

is called the covariance vector; p is the (P+1) vector 
containing the signal powers }{ ip  and sensor noise power 

pn. Note that if the sensor noise is small, it may be desirable 
to omit the model of sensor noise. B is the (N2 –  N
+1)x(P+1) matrix which contains all the array geometry 
terms and klδ  if required  

                  B = ⎥
⎦

⎤
⎢
⎣

⎡
0Im

Re
)A(A
δ)A(A

liki

klliki
*

*
                          (29)                   

The least squares solution to (28) is given by  

                         pCV= (BTB)-1BT r                              (30)                    

pCV is the vector containing the strengths of signals by the 
covariance vector. Another estimator which is simple to 
implement on line and uses a least squares fit estimator of 
the observed covariance matrix is presented in the next 
section. 

3.4 Signal power estimation by the least 
squares fit estimator 

We know the observed or true covariance matrix R of 
the array output vector. A possible approach to estimate 
signal strengths is to select the P diagonal elements of the 

diagonal matrix SR
~

which matches the unknown matrix M 

= A SR
~

AH  to the observed covariance matrix R in some 
sense. We can match M to R in various ways. One which is 
naturally suggested in the communication is to minimize 
the mean square difference between the corresponding 
elements of M and R. We minimize  

ξ = 2

F
R-M =tr[(M-R)H(M-R)]=

2

11
ijij

N

j

N

i
RM −∑∑

==
   (31)               

                                   

with respect to the elements of SR
~

, where 
F

. denotes the 

Frobenius matrix  norm. Noting that the partial derivatives 

are ip/∂∂ )( HAsR
~

A = a( iθ )a( iθ )H and setting ipξ ∂∂ = 0, 

i=1,...,P,  we obtain the set of equations  

           a( iθ )HA SR
~

AH a( iθ ) = a( iθ )H R a( iθ )               (32) 

The explicit solution to (32) is given by  

             pLS = N2[ (AHA)  (AHA)*]-1 pCB                  (33) 

where pLS is a vector whose entries are the least squares fit 
estimates of signal strengths, pCB is a vector whose entries 
are the outputs of the conventional beamformer pCBi = 
a( iθ )H R a( iθ ) /N2 and  denotes the Hadamard product of 

two matrices [5], also called elementwise multiplication; 
we have A  B=[AijBij]. Note that the least squares fit 
estimator comprises the conventional beamformer followed 
by further processing. 
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4 Numerical and experimental tests 
Numerical simulations and experimental tests were 

designed to evaluate the performances of the estimators 
presented in the communication. The conventional 
beamformer (CB),  the standard Capon beamformer (SCB), 
the robust Capon beamformer (RCB), the covariance vector 
estimator (CV) and the least squares fit estimator (LS) of 
the observed covariance matrix are employed to estimate 
the strengths of signals arriving at an array of receivers. In 
our simulations, we assume a uniform linear array with N=6 
omnidirectional sensors and half-wavelength sensor 
spacing. Four point sources are located at bearings of – 30°, 
0°, 22° and 45°. The source powers are respectively 60 dB, 
55 dB, 80 dB and 70 dB and the number of snapshots is 
T=4096. The signal to noise ratio is SNR = 20 dB. Figure 1 
shows the power estimates as a function of the direction 
angle in the case where there are no gain and phase errors 
in the acoustical sensors. The small circles denote the true 
direction of arrival and the true power of the four sources. 
The SCB and RCB estimators provide excellent power 
estimates of the incident sources and can also be used to 
determine their directions of arrival based on the peak 
power locations. The CB estimator has much poorer 
resolution than both SCB and RCB.  

Figure 1: Power estimates versus the steering direction 
using CB, SCB and RCB without gain and phase errors

Figure 2 shows the power estimates in the case where 
there are a gain error of 0.02 and a phase error 0.2° in each 
acoustical sensor. We note that SCB and RCB can still give 
good direction of arrival estimates for the incident signals 
based on the peak locations, however, the SCB estimates of 
the incident signal powers are way off. In this case, only the 
RCB algorithm gives good power estimates of the incident 
sources and can also be used to determine their directions 
of arrival based on the peak locations. 

Figure 2: Power estimates versus the steering direction 
using CB, SCB and RCB with gain and phase errors 

Figure 3 shows the effect of SNR on source power 
estimation using the RCB, the CV and the LS fit estimator. 
A gain error of 0.02 and a phase error 0.2° in each sensor 
have been considered. We note that these three estimators 
give good power estimates, only a maximum bias of 1 dB is 
obtained for the source of 55 dB situated at 0°. The source 
of 70 dB is slightly underestimated by the CV and LS 
algorithms which give the same result. 

Figure 3: Power estimates versus the SNR 

 Figure 4 shows the source power estimates versus the 
number of snapshots using the RCB and the CV algorithm  
with 0.02 gain error and 0.2° phase error in each sensor and 
SNR = 20 dB. The RCB algorithm overestimates slightly 
the true source powers with a maximum bias of 1 dB. For 
the simulated data, the RCB, the CV and the LS power 
estimation algorithms presented in the paper exhibit only a 
very slight bias. 

Figure 4: Comparison of the power estimates versus the 
number of snapshots 

The remaining part of the section is focused on the 
application of the developed algorithms to the experimental 
identification of noise sources generated by two 
loudspeakers. The experimental setup is schematically 
shown in the block diagram of Figure 5 where an acoustical 
array and two sources (the loudspeakers) are placed in the 
anechoic chamber. The receiving acoustical array is linear 
and formed with six omnidirectional microphones equally 
spaced, with interelement spacing of d =4.5 cm. The two 
sources and the acoustical array are in the same horizontal 
plane. The transmitting loudspeakers generate two typical 
audio signals at a frequency of 3800 Hz corresponding to a 
microphone separation distance of one-half wavelength. 
The number of snapshots is T=4096. We are able to find the 
direction of the two sources by using the MUSIC algorithm, 
however, unlike the methods mentioned earlier, MUSIC 
does not physically correspond to the signal power. The 
MUSIC algorithm is only an indicator of directions of 
arrival of different signals.  

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2923



Figure 5: Block diagram experimental system 

Figure 6 shows the normalized angular spectrum 
function obtained from MUSIC where important peaks 
appear at the signal directions. We obtain the angular 
position of the sources 1θ = 10° and 2θ = 19°. Once the 

arrival angles have been determined we can estimate the 
power of the two acoustical sources by the proposed 
algorithms. 

Figure  6: Experimental MUSIC spatial spectra 

 Table 1 shows the results obtained by our algorithms. 
The experimental results confirm that the CV and the LS 
estimators give very similar results and the RCB estimator 
overestimates very slightly the source powers. 

Table 1: Power estimation using different estimators 

Estimator RCB CV LS 

Source 1, 
1
θ = 10° 72,0

8 dB 
70,95 dB 70,94 

dB 

Source 2, 
2
θ =  19° 73,1

1 dB 
71,81 
dB 

71,8
0 dB 

 Figure 7 shows the power estimates versus the steering 
direction using the RCB algorithm. From this plot we 
obtain simultaneously an estimation of the directions of 
arrival and an estimation (slightly overestimated) of the 
power estimates based on the peak locations. 

Figure 6: Experimental robust Capon beamformer 

5 Conclusion 
Five signal processors to estimate the strengths of 

signals arriving at an array of sensors have been studied. 
The conventional beamformer and the standard Capon 
beamformer provide in general poor power estimates of the 
incident sources. The robust Capon beamformer gives good 
power estimates and can also be used to determine the 
directions of arrival of incident sources. The covariance 
vector and the least squares fit estimator give excellent 
power estimates. From numerical simulations and field 
tests, the RCB, CV and LS algorithms exhibit remarkable 
effectiveness in finding the strengths of signals. 

These techniques have been developed for the 
estimation of signal strengths using an array of receivers. 
However, the principles can be applied to a wide range of 
other estimation problems, of which the spectrum analysis 
of a time series is an example. 
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