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Acoustic imaging aims at localization and characterization of sound sources using microphone arrays. In this paper

a new regularization method for acoustic imaging by inverse approach is proposed. The method first relies on the

singular value decomposition of the plant matrix and on the projection of the measured data on the corresponding

singular vectors. In place of regularization using classical methods such as truncated singular value decomposition

and Tikhonov regularization, the proposed method involves the direct definition of the filter factors on the basis of

a thresholding operation, defined from the estimated measurement noise. The thresholding operation is achieved

using modified filter functions. It has the advantage of simplifying the selection of the best regularization amount.

Theoretical results show that this method is promising, in terms of ease of implementation and accuracy of results,

in comparison with Tikhonov regularization and truncated singular value decomposition.

1 Introduction
Acoustic imaging aims at localization and characteriza-

tion of sound sources using microphone arrays. Among the

most common techniques for which commercial systems cur-

rently exists, one finds: beamforming [1, 2], nearfield acous-

tical holography (NAH) [3] and inverse methods [4, 5, 6, 7,

8, 9]. One advantage of the inverse approach and confor-

mal NAH for arbitrary geometries [3] is the possible use of

non-uniform or source-conformal microphone arrays. Our

attention is focused on 1) practical inverse problems which

involve a finite number of sensors and 2) numerical inversion

of matrix-form problems subject to measurement noise and

random errors [6]. In this case, the direct system is described

by a plant matrix G ∈ C
M×L (M microphones, L sources)

that must be inverted. Major limitations and issues encoun-

tered in inverse methods in acoustics originate from the ill-

conditioning of this matrix and lead to a large sensitivity of

results to measurement noise. To circumvent this problem,

solution regularization is introduced.

Although there are very few systematic ways to compare

several regularization methods [10], comparison of the fil-

ter factors is often used to compare the behavior of various

regularization methods. The filter factors are the coefficients

(smaller than or equal to unity) that filter out the small sin-

gular values of G that may amplify measurement noise and

random errors in the inverse solution. To the authors’ knowl-

edge most of the regularization schemes lead to filter factors

that depend on the relative magnitudes of the singular val-

ues and on the regularization amount, not on the mesurement

data and noise [10]. In this paper, we are concerned with a

thresholding regularization that is directly related to data and

signal-to-noise ratio in place of singular values.

The idea of working with a thresholding singular values,

or coefficients, rejection is not new, but it was explored in a

different way than the one presented in this paper. An exam-

ple is found in the work of Thite and Thomson [7] who in-

vestigated the quantification of structure-borne transmission

paths by inverse methods. They present the selection of a

singular value rejection threshold based on either 1) the esti-

mation of the error in the system identified frequency trans-

fer functions (FRFs) or 2) the response error. The former

approach can be used because the authors deal with a mea-

sured direct system (on the basis of identified FRFs) where

an estimation of the error is possible. In this paper, it is as-

sumed that the plant matrix is derived from a model. Hence,

the former method does not apply. The second method pre-

sented by Thite and Thomson [9] is based on the idea that

if a given singular value of G (plant matrix) contributes to

the measured response less than the expected measurement

noise, it should be discarded. This is formalized through

a criterion that compares the estimated noise level with the

actual signal level scaled by the first singular value of the

plant matrix [9]. For the aforementioned methods, the singu-

lar value rejection operates from a given singular value order

i up to the system rank. In this paper, for the thresholding

operation, a direct comparison between the estimated mea-

surement noise level and the corresponding singular coeffi-

cients (projection of the measurement data on the singular

vectors of G) is performed for each singular value order i.
In other words, a low order singular value coefficient dom-

inated by noise can be discarded while a higher-order sin-

gular value coefficient with a significant signal-to-noise ratio

can be conserved. The method also shares some conceptual

backgrounds with subspace methods such as MUSIC [2] in

the sense that we want to reject measurement noise, but the

noise rejection is achieved using a different approach.

The presented method is also distinctive in terms of its

underlying hypothesis. Indeed, as for NAH, many regular-

ization methods typically a priori assume that measurement

noise and random errors will dominate singular coefficients

that involve more spatial variations (corresponding to small

singular values or to large wavenumber (typically outside the

radiation circle)). In the case of NAH, this hypothesis is for-

malized through a low-pass k-space filter [3].

2 The acoustical direct problem
The direct discrete sound radiation problem is defined by

p = Gsexact, (1)

with p ∈ C
M×1, sexact ∈ C

L×1 and G ∈ C
M×L. In. Eq. (1),

the exact source terms are sexact, the plant or sound radiation

model is matrix G and the resulting sound pressure at the

M sensor locations are stored in vector p. The number of

sources in the model is noted L.

A typical configuration is shown in Fig. 1. It includes

49 microphones. The source model is made of 49 monopole

sound sources. Microphones and sources are separated along

x1 and x2 by 0.1 m. Source array and sensor array are sepa-

rated by 0.2 m along x3. Both the source array and the sen-

sor array are uniform square arrays. This configuration was

studied by Nelson and Yoon [4] to evaluate the effect of var-

ious geometrical parameters on the conditioning of inverse

problems. For the numerical results reported in this paper,

the exact solution sexact that we look for (on the basis of the

49-source model) involves the 12 active sources (with super-

imposed white circles in Fig. 1) with amplitudes set to unity.

The Singular Value Decomposition (SVD) of G is given

by

G = UΣVH , (2)

with U ∈ C
M×M , V ∈ C

L×L and Σ ∈ R
M×L. Superscript H de-

notes Hermitian transposition. Matrices U and V are unitary
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Figure 1: A typical free-field source and microphone

configuration used for illustration purposes and for the

numerical examples. The monopole sound sources are

shown as black-filled circles and the microphones are shown

as white-filled circles. Active sources in the exact solution

sexact are indicated by superimposed white circles.

matrices and Σ is a rectangular matrix with the real singular

values σi placed in decreasing order on its main diagonal.

Using the SVD of G, one writes Eq. (1) in matrix form

p =
rank(G)∑

i=1

uiσivH
i sexact (3)

where vH
i sexact is the projection of the exact source solution

on the orthonormal vector basis vi and where rank(·) is the

matrix rank. The singular values σi represent the coupling of

the transformed source distributions vH
i sexact with the trans-

formed pressures uH
i p (indeed: uH

i p = σivH
i sexact).

3 The acoustical inverse problem
We now assume that p represents a sound field measured

at M locations. The measured sound field p also includes

measurement noise. The objective of inverse sound radia-

tion problems is to find a source distribution s that optimally

predicts the measured sound field p. This is formulated as

follows

p ≈ p̂ = Gs (4)

where p̂ is the predicted sound pressure field at the M points.

The inverse problem solution is generally obtained using

the pseudo-inverse of the plant matrix G

s = G+p, (5)

where + indicates pseudo-inversion [10]. Using the SVD of

G, Eq. (5) is written

s =
rank(G)∑

i=1

uH
i p
σi

vi. (6)

Most inverse problems are ill-posed [4, 5, 10]: the sin-

gular values typically span many orders of magnitude and

the very small singular values may over-amplify the corre-

sponding contribution of (uH
i p)vi. There is therefore a need

for solution regularization [10]. Any regularization strategy

(including classical Tikhonov regularization, Tikhonov reg-

ularization with discrete smoothing norm, truncated singular

value decomposition [10]) will lead to a modified version of

Eq. (6) in the form

s =
rank(G)∑

i=1

fi
uH

i p
σi

vi, (7)

where the fi are the filter factors [10]. The filter factors range

from zero to unity. Filter factors smaller than one artificially

damp the corresponding singular components (uH
i p/σi)vi in

the solution s.

3.1 Truncated singular value decomposition
One of the most basic regularizations involves the trun-

cation of the SVD of G. Then, the filter factors are [10]

fi =

⎧⎪⎪⎨⎪⎪⎩
1 ∀ i ≤ K
0 ∀ i > K,

(8)

where K is the truncation order which operates as a regular-

ization parameter. This parameter selection will also typi-

cally depend on the plant matrix, the singular values and the

measurement noise. Finding the best truncation order K is

not easy and specific methods are designed for that specific

purpose [7, 9]. Typical truncated singular value decomposi-

tion (TSVD) filter factor shapes are shown in Fig. 2(a) and

(b). In this type of regularization, filter factors abruptly pass

from unity to zero at i = K + 1. Therefore TSVD can be in-

terpreted as a regularization method that uses Heaviside step

functions as filter factors for which singular values smaller

than σK are cancelled. Regularization based on TSVD is

mostly suited for rank-deficient problems where the numeri-

cal rank [11] is lower than the smallest dimension of G.

3.2 Classical Tikhonov regularisation
The classical Tikhonov regularization with regularization

parameter λ gives the following filter factors [10]

fi =
σ2

i

σ2
i + λ

2
=

1

1 + λ2/σ2
i

(9)

These filter factors are a direct consequence of the stan-

dard formulation of the inverse problem with Tikhonov reg-

ularization in the form of a quadratic minimization problem

s = argmin{||p − p̂||22 + λ2||s||22} (10)

where ||p − p̂||22 involves a minimization of the prediction er-

rors, in the least-mean-square sense, at the sensor array and

λ2||s||22 penalizes the solution 2-norm. The regularization pa-

rameter λ controls the amount of regularization. Further de-

tails can be found in [10].

Typical filter factors of Tikhonov regularization are shown

in Fig. 2(c) and (d). These generic shapes are much smoother

than the generic TSVD step-like filter factors. Also, they

have the advantage of automatically imposing a threshold on

the acceptable singular values. Indeed, any singular coeffi-

cient uH
i p that is associated with a singular value for which

σi ≤ λ will be filtered out by the filter factors. For very small

singular values, fi ≈ σ2
i /λ

2. According to the last expres-

sion in Eq. (9), the filtering operation solely depends on the

penalization-to-singular-value ratio λ/σi. This confirms the

observation in the introduction, that Tikhonov regularization

is directly related to the singular values. In the next section,

a similar function for the filter factor will be introduced, but

this time in terms of signal-to-noise ratio. Tikhonov regu-

larization is often used for general ill-posed problems where

the condition number κ(G) = σmax/σmin is large (σmax and

σmin being the largest and the smallest singular values, re-

spectively).
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Figure 2: Generic representations of filter factors. Left:

Logarithmic vertical scale. Right: Linear vertical scale. (a)

and (b): TSVD filter factors for a truncation order K. (c)

and (d): filter factors obtained for Tikhonov regularization

in terms of normalized regularization parameter λ/σi.

4 Direct definition of the filter factors
using signal-to-noise ratio

The behavior of the filter factors as defined above is a di-

rect consequence of the selected regularization strategy. In

direct regularization methods such as TSVD and Tikhonov

regularization, the selection of the best regularization param-

eter K or λ is not a trivial task [5, 7, 9]: it depends on both

the regularization strategy and the measured data. Several

regularization parameter selection methods in acoustics have

been investigated by Nelson and Yoon [4]. Most common

direct regularization strategies involve a comparison of the

regularization parameter with the singular values, and not

the measured sound field. In all regularization strategies,

the main objective is to cancel in Eq. (7) the contribution

of the singular components that are dominated by measure-

ment noise. Since the coefficients uH
i p stabilize to a value

equal to the measurement noise effective value σnoise [10], it

would be interesting to artificially define a set of filter factors

that would automatically discard the coefficients uH
i p lower

than or in the range of σnoise. This is the purpose of the pre-

sented method. Hence, for the proposed method, G, p and

σnoise must be known in order to implement this regulariza-

tion. Note that this thresholding regularization method is dif-

ferent to the ones reported in [7, 9] since in these references

the authors seek for a rejection threshold that would give the

best TSVD order K.

Also note that this inverse problem regularization method

has similarities with previous regularization techniques. In-

deed, in the literature on general inverse problem, one finds

many regularization strategies that are not defined through

typical quadratic optimization problems (as for Eq. (10)) but

are derived from target performances for various type of ap-

plication [10]. Assuming that the measurement noise effec-

tive value σnoise is known, either from direct measurement or

from an estimation, it is possible to proceed to the next step.

In Sec. 3.2, it was noted that the classical Tikhonov filter

factors have a simple definition (Eq. (9)) and depend on the

ratio λ/σi. In this section, we keep a similar structure for the

filter factors, but we use a new ratio R. We then write

fi =
1

1 + R
. (11)

As for the filter factors shown in Fig. 2(c), this function goes

from one to zero as R goes from 0 to ∞. It is desirable to

relate this ratio R to the signal-to-noise ratio for each of the

individual singular coefficients uH
i p. Accordingly, the filter

factors of Eq. (11) can be written as follows

fi(σnoise) =
1

1 + R−αi
(12)

with the signal-to-noise ratio Ri = pHuiuH
i p/σ2

noise
and α ≥

0. The transition rate (toward one or zero) is controlled by the

scaling coefficient α in Eq. (12). In Eq. (12), when the coef-

ficients uH
i p are large compared to the noise effective value

σnoise, the R−αi are small and the filter factors converge to-

wards one. When the coefficients uH
i p are small compared

to the noise level, the R−αi are large and the filter factors con-

verge towards zero. Moreover, the threshold from which the

coefficients are filtered is automatically defined by the esti-

mated noise level which greatly simplifies the regularization

parameter selection.

However, it is known that the coefficients uH
i p tend to sta-

bilize to the noise effective value as i increases [10]. There-

fore, according to Eq. (12), the imposed filter factors fi(σnoise)

would simply tend to the value 1/2. Such a value does not

eliminate the singular components that are subject to mea-

surement noise in Eq. (7). This is exemplified in Fig. 3 for

the source and microphone configuration shown in Fig. 1 at

800 Hz. In this example, the exact solution involves a set of

active sources (Fig. 1) with unit monopole amplitude. Fig-

ure 3 shows the coefficients uH
i p as function of i for a case

without noise and with Gaussian noise with a standard devi-

ation equal to 0.005. These coefficients tend to globally de-

crease with i. In the case with measurement noise, the uH
i p

asymptotically tend to the noise level of 0.005 Pa. Also, in

the case without noise, some of these coefficients are very

small (outside the figure range). This is a direct consequence

of the active source configuration that creates a sound field

which is potentially orthogonal to some of the singular vec-

tors ui. We now proceed with modified filter factors based on

the signal-to-noise ratio with an additional offset coefficient

that will tackle the above limitation.

Since the fi defined in Eq. (11) vary from one to zero for

R varying between roughly R = 10−3 to R = 103, the scaling

coefficient is set to α = 4 and a supplementary offset β = 0.75

is introduced. The following filter factor is proposed

fi(σnoise) =
1

1 + (10−βRi)−α
. (13)

In this case, the ratios Ri = pHuiuH
i p/σ2

noise
that are at least

10β are left unfiltered (corresponding to fi ≥ 0.5) while the

ratios Ri that are equal or lower than 10β are filtered ( fi ≤
0.5). With β = 0.75, this threshold corresponds approxi-

mately to 5 (100.75 = 5.6234). The selection of α controls the

transition rate from the passband to the stopband and the off-

set β adjusts the threshold from which the filter factors will

pass from smaller than to larger than 1/2. When α becomes

very large, the filter factors Eq. (13) will tend to a Heaviside

step function. These simple features highlight the interest of

introducing the signal-to-noise ratio in place of the λ/σi ratio

in filter factors.
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Figure 3: Singular values σi and singular coefficients uH
i p

[Pa] without noise and with noise (σnoise = 0.005 Pa).

Sound pressure p is created using Eq. (1) for the

configuration shown in Fig. 1 at 800 Hz. Coefficients uH
i p

with measurement noise tends to 0.005 Pa (dashed line)

which corresponds to σnoise.

The filter factors as defined above using the SNR ratio

and Tikhonov regularization are shown in Fig. 4 for the ex-

ample mentioned above with measurement noise. In the case

of Tikhonov regularization, the regularization parameter λ
was set equal to σ30 so that the Tikhonov regularization ef-

fectively filters out the components uH
i p that are dominated

by noise from i = 31 to i = 49 (see Fig. 3). On Fig. 4, one

notes that the filter factors obtained from the signal-to-noise

ratio and Eq. (13) will effectively filter out the components

that are in the range of the noise level. For the coefficients

uH
i p that are in the range of the noise level (shown as dashed

lines in Figs. 3 and 4), the SNR approach filters out much

more strongly than the Tikhonov regularization. Also, one

interest and distinction of the filter factors based on the SNR

is that they also filter noisy components even if they are as-

sociated with large singular values. An example of this prop-

erty is clearly visible in Fig. 4 for i = 4. This type of behav-

ior cannot arise in singular value rejection methods such as

those proposed in [7, 9]. From this behavior, we expect to ob-

tain less spatial low-frequency noise in the solution with the

SNR filter factors. Moreover, higher-order coefficients (in

the range of i = 30) with significant SNRs are preserved with

the proposed method. This is not the case with the Tikhonov

or TSVD regularization. Therefore, we also expect a sharper

solution with the proposed method.

5 Numerical examples
In this section, we compare the inverse problem solutions

s obtained from pseudo-inversion, TSVD, classical Tikhonov

regularization and the SNR filter factors for the basic source

and receiver configuration presented by [4] and shown in

Fig. 1. The direct and inverse problems involve 49 unknown

sources and the exact solution involves only 12 active sources.

The assumed sound pressure was evaluated using Eq. (1) and

measurement noise was added to p as a zero-mean Gaussian

random process with standard deviation σnoise. The goal is to

retrieve the 12 active sources from the 49 candidates in the

inverse problem.

The mapping of the exact and inverse solutions in the
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Figure 4: Filter factors obtained using SNR (Eq. (13)) and

Tikhonov regularization (Eq. (9)) for the numerical example

reported in Fig. 1. Grey lines and markers are copies of the

coefficients uH
i p with noise (Fig. 3).

source plane is shown in Fig. 5. Clearly, the TSVD, Tikhonov

and filter factors based on SNR solutions all approach the ex-

act solution to some extent. As expected, the pseudo-inverse

solution (Eq. (5)) provides an incorrect estimation. The pro-

posed method with the SNR filter factors is effective and

provides a more accurate description of the sources than the

other methods.

To quantify the accuracy of the inverse solutions, the rel-

ative error norm ||sexact − s||2/||sexact||2 is introduced in Tab. 1.

From this performance metric, we see that the most efficient

method is the filter factors based on SNR. It is worth noting

that this method outperforms the two most common regu-

larization methods: TSVD and Tikhonov regularization, for

source imaging.

To illustrate how the method effectively approximates the

measured sound pressure p at the microphone array, the rel-

ative residual norm ||p − p̂||2/||p||2 on the predicted sound

pressure is reported in Tab. 1. Clearly, the pseudo-inverse

solution very well approximates the initial acoustic pressure.

This is expected since the pseudo-inverse solution should

provide p̂ = p (since M = L) at the cost of a nearly insta-

ble inverse problem solution s. The two classical methods,

namely the TSVD and Tikhonov regularization lead to the

largest prediction errors. This was also expected since these

methods involve a progressive filtering ( fi gets smaller as i
increases from σi = λ) of the measured data to stabilize the

solution. The method based on SNR also outperforms the

others in terms of prediction error at the microphone array.

6 Conclusion
In this paper, a new regularization method for acousti-

cal inverse problem was proposed and illustrated in a simple

source identification problem. The proposed method is not

primarily meant to increase spatial resolution or accuracy of

the solution but to provide a regularization that is directly de-

rived from a comparison of the singular coefficients with the

measured or estimated noise level. The proposed method re-

lies on the direct definition of the filter factors with a thresh-

old value related to the estimated noise level. It was shown

that the proposed method performs at least as effectively as

the TSVD or Tikhonov methods.
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Figure 5: Magnitudes of exact solution sexact (monopole

amplitude [Pa m]) and various solutions s (monopole

amplitude [Pa m]) with σnoise = 0.005 Pa. (a): exact

solution; (b): pseudo-inverse solution (Eq. (5)); (c) TSVD

solution with K = 30; (d): Tikhonov solution and with

λ = 0.0506 = σ30, and (e): SNR fi solution.

To achieve a more efficient regularization, it could be

interesting to combine the proposed method with other ap-

proaches such as singular value rejection methods like those

proposed by Thite and Thompson [7]. It could also be possi-

ble to combine the proposed method with the scaling method

presented by Moorhouse [6]. In this scaling method, it is

assumed that the most significant measure is the mean sound

pressure at the microphone array. The resulting inverse prob-

lem solution is then scaled to ensure that the reconstructed

mean sound pressure is equal to the measured mean sound

pressure.

The proposed method could also be extended to acous-

tic imaging methods, such as conformal NAH or HELMS

(Helmholtz Least-Mean-Square) where matrix inversion is

also performed. This is a topic of curent developments.

Since the proposed method mostly focused on measure-

ment noise, further work could be done to evaluate the ef-

fect of other types of random errors on plant matrix G (mi-

crophone positioning, phase mismatch, etc.) and to possibly

define a new thresholding regularization method that would

fit the case of random errors in microphone array measure-

ments. Systematic study of the parameters α and β should

also be done.

Current work, not reported in this paper, studies the effi-

ciency of the proposed method with varying noise level. This

is the topic of a current manuscript. Preliminary results are

promising.

Table 1: Performance of the regularization methods based

on the relative error norms at the source distribution

||sexact − s||2/||sexact||2 and on the relative residual norms at

the microphone array ||p − p̂||2/||p||2.

Regularization Relative error

norm

Relative

residual norm

Pseudo-

inverse

1.6611 3.961×10−14

TSVD 0.43171 0.005088

Tikhonov 0.368 0.0052601

SNR 0.21916 0.002824
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