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The media of interest are composed of N parallel infinite rows of steel cylindrical shells, periodically spaced, immersed in 
water. The influences of geometrical perturbations from rows to rows are investigated. Either the inner radius of the shells 
between two adjacent rows is varied, or the spacing between the rows is changed. The steel rows can also be replaced by steel-
polyethylene bilayers. Time domain simulations have been performed using COMSOL® to visualize the spread of wave 
packets in the structures. In the frequency domain, the stop bands and pass bands of the transmission coefficient in the different 
cases are compared. The perturbations cause either the appearing of narrow pass bands in the stop bands, or the widening of 
the stop bands. If a harmonic plane wave is normally incident on an infinite row, we highlight the transmission (resp. the total
reflection) of the waves by the phononic crystal for certain frequencies located in pass bands (resp. stop bands). If the incident 
wave is sent normally to the N rows, deviations or focalizations of the transmitted waves with respect to the incident direction
are observed. 

1 Introduction

We investigate the effects of periodicity perturbations in 
phononic crystals composed of N parallel rows of identical 
steel shells immersed in water. These perturbations include 
variations of the inner radius of shells, of the spacing 
between rows and of the number of rows forming the 
phononic crystal (PC). We focus particularly on the effects 
of those periodicity perturbations on the pass bands and 
stop bands appearing in the plot of the transmission 
coefficient versus reduced frequency. The steel rows can be 
replaced by steel-polyethylene bilayers. In this case, the 
same types of geometrical perturbations are studied in the 
frequency domain. Simulations in the time domain, when 
an incident wave is sent normally to the N rows are also 
performed. Two configurations are investigated. Either the 
thickness of the tubes are increased from the bounds of the 
crystal to its middle, or conversely, giving rise to 
focalizations or deviations of the transmitted waves. 

2 Stop bands and pass bands of a 
steel shell phononic crystal

The geometry of the PC is given in Figure 1. The 
structure is immersed in water (density w = 1000kg/m3,
sound velocity cw=1470m/s). Each row contains an infinite 
number of steel shells parallely and periodically spaced 
along the Y direction with a spacing d. For steel, the density 
is s = 7900kg/m3, the longitudinal and transverse velocities 
are cl=5790m/s and ct=3100m/s. The relative thickness of 
one shell is fixed by the ratio b/a=0.88 where a and b 
denote the outer and the inner radius of the shell (a=5mm). 
The spacing d is equal to 2.65a. We consider a PC made up 
of N regularly spaced identical rows along the X direction, 
with a spacing D (D/a=3) from centre to centre. The 
incident wave is a plane harmonic pressure wave whose 
expression is given by 
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with A=106 Pa, t0= /f0 and dt= /f0 and  (  =2 and  =6).  
This wave propagates in the X direction and is normally 
incident on the PC as indicated in Figure 1. 

Figure 1: Geometry of steel phononic crystal. 

The transmission coefficient T is obtained using both 
the multiple scattering method in a row [1] and Fabry Pérot 
method between adjacent rows [2-4]. Figure 2 shows the 
modulus of this transmission coefficient plotted versus 
reduced frequency ka, where k=2 f0/cw (N=14 rows). A 
large stop band can be observed in the reduced frequency 
interval 0.8-1.4 while on both sides, undulations appear in 
the pass bands. The number of oscillations increases with 
the number of rows. Results on PCs made up of steel shells 
were obtained also by Khelif et al. [5] by using a FDTD 
calculation.
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Figure 2: Transmission coefficient for 14 rows 

We give below the results of simulations for two 
values of ka, at a given time. In this work, absorbing 
conditions are applied at the boundaries of the boxes 
containing the PC, except the side of the incident wave. 
When the reduced frequency ka lies in a stop band we have 
the situation of Figure 3(a) where the wave fronts are 
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reflected. The waves propagating in the PC are strongly 
attenuated and no transmitted waves can be observed. The 
waves do not penetrate the PC more than on its half length. 
When the reduced frequency ka takes values in a pass band, 
the incident wave travels through the PC : a total 
transmission of the wave is observed (no reflection occurs). 
The waves propagate in the PC with very little attenuation. 
The maximum of the pressure field corresponds to the red 
color (106 Pa) and the minimum to the blue color (-106 Pa).  

Figure 3: (a) Simulation at t=215 s, ka=1.1 (stop band); 
(b) Simulation at t=365 s, ka=0.714 (pass band). 

3 Engineering stop bands with 
particular PCs

3.1 PCs with regularly spaced bilayers 
Let us consider now PCs composed of a sequence of N 

bilayers. A bilayer is made up of one row of steel shell and 
one row of polyethylene shell, with b/a = 0.88, d/a = 2.65 
and D/a =3 [6]. Polyethylene has density P=940 kg/m3, the 
longitudinal and transverse velocities are cl=2370 m/s and 
ct=800 m/s. We consider at first the case where the bilayers 
are separated by a constant spacing D, as shown in Figure 
4.

Figure 4: Geometry of steel-polyethylene bilayers (D/a = 3) 

The transmission coefficients for 10 and 100 bilayers 
are presented in Figure 5.  
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X Figure 5: (a) Transmission coefficient for 10 bilayers; 
(b) Transmission coefficient for 100 bilayers. 

In the cases (a) and (b), five stop bands are observed. 
They are more marked for 100 bilayers (Figure 5(b)) than 
for 10 bilayers (Figure 5(a)). The width of the stop bands 
are nearly the same. The number of oscillations in the pass 
bands between two stop bands is linked with the number of 
bilayers. The first three stop bands are associated to the 
steel rows and the two last ones to polyethylene rows. 
Simulations in the time domain give similar results to those 
shown in Figures 3(a) and 3(b). It is to be noted that for 
d/a= 2.3 the pass band around ka = 2 disappears. 

3.2 PCs with varied spacing between 
bilayers

We now consider an increasing spacing between the 
bilayers in the X direction., as sketched in Figure 6. The 
variation of spacing between adjacent bilayers obeys the 
law DN= (3+0.1(N-1))a. 

Figure 6: Geometry of steel-polyethylene bilayers with 
a variation of spacing. 

Incident 
wave 

R T

D1 D2 D3 D4

Y

X

T

D

Incident wave 

R

Y

X

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3405



The transmission coefficient for 10 and 100 bilayers are 
shown in Figure 7. For 10 bilayers (Figure 7(a)), the 
transmission coefficient presents few differences with the 
one of Figure 5(a), except at high frequency, around ka=2 
where a larger band gap takes place.  
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Figure 7: (a) Transmission coefficient for 10 bilayers; 
(b) Transmission coefficient for 100 bilayers. 

For 100 bilayers (Figure 7(b)), the transmission 
coefficient is completely different of the one shown in 
Figure 5(b). A very large stop band is now observed 
between ka = 0.2 and ka = 1.5, whereas two pass bands 
exist in the case of a regular spacing. For the chosen value 
of d/a, it still exists a pass band in the normalized frequency 
range 1.6-1.8.  It can be shown that for d/a = 2.3 the pass 
band located in the interval of ka 1.6-1.8 disappears, so the 
stop band is even more widened. This objective of finding 
large band gaps can be encountered in the case of PCs made 
up of cylindrical air inclusions in an elastic host matrix [7]. 

Figure 8: Simulation at t = 800 s (a), ka = 1 (stop 
band); (b) ka = 0.81 (pass band). 

Figures 8(a) and 8(b) show simulations in time domain 
in the case of 10 bilayers, for two frequencies, ka = 1 (stop 
band) and ka = 0.81 (pass band), chosen in Figure 7(a). The 
values of the parameters  and  in the incident pressure 
wave are 8 and 24, respectively.  In the case (a), the 
incident wave is reflected by the PC without any 
transmission, whereas in case (b), it is transmitted through 
it, without any reflection. 

4 Focalization 
Let us consider a PC composed of 12 rows of steel 

shells parallel to the Y axis as shown in Figure 9. From the 
outer row to the central row, the thickness of the shells 
increases while the spacing between rows decreases. The 
ratio b/a is varied from 0.9 to 0.4 by step of - 0.1. The 
spacing law is DN= (3-0.4(N-1))a. So the density of the 
matter increases from the exterior to the interior of the 
structure. No simple analytical expression of the 
transmission coefficient can be obtained in the case where 
the wave impinges the structure as shown in the figure. 
Only simulations in the time domain were performed using 
COMSOL®.

d

Figure 9: Geometry of a PC for simulating the 
focalization. 

Let us select the values ka = 0.85,  =2 and  =4. As 
shown in Figure 10, the wave is transmitted by the PC. This 
process is accompanied by a deformation of the wave fronts 
and at the time t = 380 s, a focalization of the wave occurs. 

Similar results, but for a denser packed set of cylinders 
have been shown in Ref. [8]. The focalization is due to the 
variation of the density of shells in the PC. The wave 
converges towards the symmetry line of the PC 
corresponding to the place of higher matter density. Such a 
structure can be seen as an acoustic lens. The location of 
focalization can be modified by varying the length of the 
rows in the Y direction. According to the shell thickness 
and to the row spacing variations, the size of the focal spot 
can be settled. 
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Figure 10: Simulation of the focalization at t = 64 s (a) 
and at t = 380 s (b) for ka = 0.85. The rays indicate the 
focalization point.  

5 Deviation

A configuration in which the thickness of the shells 
decreases from the exterior to the interior of the PC is now 
examined. The b/a ratio range from 0.4 to 0.9 by step of 
0.1.  The law of variation of the spacing between rows of 
section 4 is kept. The geometry of such a PC is given in 
Figure 11. We still consider an incident wave in the Y 
direction.  

Figure 11: geometry of a PC for simulating deviations. 

For the same values of ka,  and  as in section 4, the 
incident wave propagates through the PC. As shown in 
Figure 12, the initial wave splits into two ones. Each of 
these waves deviates towards the regions of high matter 
density. At the time t = 560 s, they are located in 
symmetrical directions with respect to the symmetry line of 
the PC.   

Figure 12: Simulation of the deviation at t = 560 s for 
ka = 0.85, showing the reflected wave, the splitting of the 
transmitted wave and the trajectories. 

Y

6 Deviation and rebuilding 

In this section, our purpose is to obtain a perfect split of 
the incident wave behind in the outer side of the PC 
allowing to isolate a domain not (or very slightly) perturbed 
by the wave. It will be interesting in this context to rebuild 
the initial wave by setting at an adequate distance one 
focalizing PC of the type of those studied in section 4.  

(a)

Figure 13 Simulation of the deviation and its rebuilding, at 
t=90 s (a), t= 471 s (b) and t= 636 s (c) for ka=0.64 

As shown in Figure 13, we send a plane wave to the PC 
(a) which has the same geometry than the ones studied in 
section 5, and then the initial wave splits into two ones 
(b).We chose 20 rows of deviating PC in order for the 
incident wave to be relatively well separated into two 
waves. For the same reason, we fix the distance between 
the two types of PCs is equal to 0.108m. After, the two 
waves cross the second part of the whole structure 
containing 5 rows of focalizing PC, One recovers almost 
the same form as the incident wave (c). If we take more 
rows, the wave is focalized. 
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7 Conclusion 

Various configurations of PCs composed of elastic 
shells have been studied in the frequency and time domains 
in this work. Its aim was to analyze the influence of 
periodicity perturbations on the stop bands and pass bands 
of the transmission spectra on the one hand, and on the type 
of propagation through a given PC on the other hand. 

It is shown for PCs composed of N regularly spaced 
infinite rows of identical shells that the transmission 
coefficient exhibits pass bands and stop bands. The 
transmission spectrum is calculated by using the multiple 
scattering theory and a Debye series expansion when the 
incident wave is sent normally to the infinite rows. The 
number of undulations in the pass bands depends on the 
number of rows. The more important this number is, the 
more marked the stop bands are. 

If we replace regularly spaced steel rows by steel-
polyethylene bilayers, the transmission spectrum can be 
largely modified. We can also consider a PC composed of 
N irregularly spaced bilayers. Widenings of stop bands are 
observed in comparison to the previous case. When both 
variations of thickness and row spacing are taken into 
account, focalization or deviation phenomena are put in 
evidence, under certain conditions of insonification : the 
propagation direction of the incident wave is normal to the 
finite side of the PC. Finally, with these results, we can 
create structures associating deviating and focalizing PCs in 
order to rebuild the incident wave.  

The possible perspectives will be to consider oblique 
incidence and to obtain spectra in the cases of focalization 
and deviation. 
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