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Institut de Mécanique et d’Ingénierie de Bordeaux (I2M), UMR CNRS 5295, Arts et Métiers
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Ultrasonic guided waves in an anisotropic elastic plate immersed in a fluid can be considered as the result of
successive reflections from the plate walls. Inhomogeneous (surface) waves are involved in the problem if the
incidence angle is greater than the first critical angle.
In this latter case, the energy is transmitted from one side to the other by the coupling of two inhomogeneouswaves
with conjugate wavenumbers and same kind of polarization, whereas each of these latter inhomogeneous waves
does not transfer energy through the plate.
Thus, nonstandard upgoing and downgoing waves are defined such that, firstly, their power fluxes are upgoing and
downgoing, respectively, and, lastly, their interaction energy is zero.
In this light, an interesting physical phenomenon is described for one specific pair “angle of incidence/frequency”:
the quasi-energy brought by the incident harmonic plane wave crosses the plate without any conversion to reflected
waves either at the first interface or at the second interface. In this zone, there is a perfect impedance matching
between the fluid and the plate. This case is remarkable because a full energy transmission from one side to
the other generally corresponds to a Lamb wave, usually considered as the result of interferences of multiple
reflections.

1 Introduction

On the basis of a recent work [2], which proposes a
method to insure the convergence of the series resulting from
the multiple reflections/refractions by an immersed plate, the
construction of Lamb waves is presented as constructive in-
terferences for any angles of incidence, i.e. beyond or be-
fore each critical angle. Up to now, this explanation was re-
stricted to the case of angles of incidence less than the small-
est critical angle. This work constitutes, from this point of
view, a generalization. Beyond this improvement, an inter-
esting phenomenon has been observed close to the Rayleigh
angle for an aluminium plate immersed in water. At this in-
cidence angle, the incident wave in the upper fluid is totally
transmitted to the lower fluid, without any multiple reflec-
tion/refraction -in the plate- of the waves defined in the new
wave basis. The plate seems to be really transparent, in a
sense that no energy stays in the guide.

2 Theoretical background

2.1 Acoustic fields in the fluid

The plate is insonified by an incident time-harmonic plane
wave of incidence angle θ and angular frequency ω. Due
to the Snell-Descartes law related to the reflection/refraction
of harmonic plane waves, the factor exp [ ω (τ − sx x)], con-
taining the dependence with respect to time τ and abscissa x,
sx = sin(θ) / c being the slowness in the x-direction and c the
sound velocity in the fluid, necessarily appears in all expres-
sions of acoustic fields (see Fig. 1). Hence, the latter factor
will be then omitted below.

The incident acoustic wave is characterized by the acous-
tic pressure:

pinc( Z ) = ainc

√
2 sz

ρ
exp

[
sz (Z − H)

]
, z > h , (1)

sz = cos(θ) / c denoting the slowness in the z-direction, ρ the
fluid density, 2h the thickness of the plate, Z=ωz and H=ωh
frequency-position products. The coefficient

√
2 sz / ρ is due

to normalization with respect to the mean power flux in the
z-direction, that is, the mean power flux is negative and equal
to − | ainc |2.

Thus, the reflected (upgoing) field is given by:

pref( Z ) = aref

√
2 sz

ρ
exp

[− sz (Z − H)
]
, z > h , (2)

such that its mean power flux in the z-direction is positive
and equal to | aref |2.

The transmitted (downgoing) field in the fluid below the
plate is characterized by:

ptr( Z ) = atr

√
2 sz

ρ
exp

[
sz (Z + H)

]
, z < −h . (3)

such that its mean power flux in the z-direction is negative
and equal to − | atr |2.

Due to the linearity of the problem, the reflection and
transmission coefficients r and t are defined such that
aref = r ainc and atr = t ainc. Energy conservation implies that
| r |2 + |t |2 = 1.

2.2 Elastodynamic field in the plate

2.2.1 Standard decomposition

By using Stroh sextic formalism (e.g., [6, 3, 1, 7, 5]), the
vibrational state of the elastic anisotropic plate is described
by the following six-dimensional vector:

U( Z ) =

⎡⎢⎢⎢⎢⎢⎣ v( Z )

σz( Z )

⎤⎥⎥⎥⎥⎥⎦ = Ξ E( Z ) a , −h < z < h , (4)

where v is the velocity vector and σz the stress in the z-
direction. The matrix Ξ =

(
ξ1 · · · ξ6

)
contains the

six-dimensional polarization vectors. The diagonal matrix
E( Z )=diag

[
exp(− ςα Z )

]
1�α�6 represents the propagation,

ςα=ς
′
α− ς′′α denoting the slowness in the z-direction. The

six pairs
(
ςα , ξα

)
1�α�6 are the solutions of the eigenvalue

equation S ξα = ςα ξα , where S is the real-valued Stroh
matrix defined in [2]. (2 ) of them are real and correspond
to homogeneous (or bulk) waves. (3 − ) pairs of them are
complex conjugate and define conjugate inhomogeneous (or
surface) waves.

Let us consider the matrix :

=
−1
4

(
3

3

)
, (5)

3 and denoting the three-by-three identity matrix and
the zero matrix of any dimension, respectively. The ma-
trix is taken such that ξT

α ξα is the third component of
the Poynting vector of the αth exponential solution if both
the z-component of the slowness and the polarization vectors
are real-valued, i.e. ξT

α ξα is the average power flux in the

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

620



x
y

z

θ

θθ

Plate

Fluid

Fluid

−h

h

Elastodynamic waves

pinc(Z) ω (τ−sx x) pref(Z) ω (τ−sx x)

ptr(Z) ω (τ−sx x)

Figure 1: An elastic plate immersed in a fluid, insonified by
a plane wave of incidence angle θ.

z-direction for any homogeneous solution (see [2] for more
details).

Assuming for simplicity that the six eigenvalues are dif-
ferent, the numbering of the six pairs

(
ςα , ξα

)
1�α�6 is made

as follows:

ςα ∈ R, ξα ∈ R6 ξ
T
α ξα = 1 1 � α �

Im (
ςα

)
< 0 Im (

ξα
)
� 06 ξ

T
α ξα = 1 < α � 3

ςα ∈ R, ξα ∈ R6 ξ
T
α ξα = −1 4 � α � 3 +

ςα = ς
∗
α−3 ξα = ξ

∗
α−3 ξ

T
α ξα = 1 3 + < α � 6

(6)
such that the first three waves are upgoing (positive power
flux φα for bulk waves/decreasing amplitude exp(−ως′′α z)
with increasing z for surface waves) and the last three waves
are downgoing (negative power flux/decreasing amplitude
with decreasing z).

2.2.2 Non standard upgoing and downgoing waves

The mean power flux φ through any plane z=z0 is the z-
component of the Poynting vector which can be expressed
with respect to the components aα of the vector a [Eq. (4)].
Because this flux, espressed as follows:

φ =
∑
α=1

∣∣∣ aα
∣∣∣2 − 3+∑

α=4

∣∣∣ aα ∣∣∣2 + 3∑
α= +1

aα a∗α+3 + a∗α aα+3 , (7)

contains interaction terms (aα a∗
α+3+a∗α a

α+3) for inhomoge-
neous components, nonstandard upgoing and downgoing
waves are respectively defined as follows:

Ñα( Z ) =
1√
2

[ − ςα (Z−Zα) ξα +
− ς∗α (Z−Zα) ξ∗α

]
, (8)

Ñα+3( Z ) =
1√
2

[
− − ςα (Z−Zα) ξα +

− ς∗α (Z−Zα) ξ∗α
]
, (9)

where the origin zα of the z-axis can be chosen arbitrarily, for
any α such that <α�3. Due to the symmetry of the problem,
the origins zα are taken equal to zero in the present paper (for
more details on this point, see [2]). An example of waveform
is drawn in Fig. 2 in the case where the real part of ςα is
zero. For homogeneous waves, i.e. 1�α� or 4�α�3+ ,
Ñα( Z ) = − ςα Z

ξα.

Indeed the mean power flux φ associated to the six-
dimensional vector U( Z ) = Ñ( Z ) ã, where the matrix Ñ is(
Ñ1 · · · Ñ6

)
, becomes:

φ =

3∑
α=1

∣∣∣ ãα
∣∣∣2 − 6∑

α=4

∣∣∣ ãα ∣∣∣2 . (10)

This flux is the sum of the fluxes of three upgoing waves mi-
nus the sum of the fluxes of three downgoing waves, without
any interaction term.

Linearity and energy conservation imply that ã=g̃ ainc and:

1 − | r |2 = −
3∑
α=1

∣∣∣ g̃α ∣∣∣2 + 6∑
α=4

∣∣∣ g̃α ∣∣∣2 = | t |2 . (11)

x
0 λ

2 λ
3λ
2 2 λ 5λ

2 3 λ

z
−

z 0

0

Legend:
−vmax 0 vmax

Figure 2: Magnitude of non-zero coordinates of nonstandard
progressive waves in the case where the slowness ςα is

purely imaginary.

2.3 Debye series

2.3.1 The first reflection/transmission

The downgoing incident acoustic wave, in the fluid above
the plate, produces an upgoing reflected wave, with a reflec-
tion coefficient r̃0, and a transmitted downgoing elastic wave,
with a transmission vector g̃0, such that:

Ñ( H )

(
0
g̃0

)
− r̃0 hup = hdown, (12)

the four-by-six matrix being
(

4

)
and the four-dimen-

sional vectors hup,down being
(
±√

2 sz / ρ 0 0 −√
2 ρ / sz

)T

.

2.3.2 Internal reflections/transmissions

In the plate, each downgoing elastic wave produces at the
lower interface an upgoing reflected elastic wave, with a re-
flection matrix R̃bot, and a transmitted downgoing acoustic
wave, with a tranmission vector t̃bot, such that:

Ñ(−H )

⎛⎜⎜⎜⎜⎜⎝ R̃bot

3

⎞⎟⎟⎟⎟⎟⎠ − hdown t̃T
bot = 0 . (13)

Similarly, at the upper interface:

Ñ( H )

⎛⎜⎜⎜⎜⎜⎝ 3

R̃top

⎞⎟⎟⎟⎟⎟⎠ − hup t̃T
top = 0 . (14)

The successive reflections/transmissions are represented
in Fig. 3.
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Figure 3: Successive reflections/refractions in an immersed
plate.

2.3.3 Global coefficients

The global fields result from successive reflections/trans-
missions. The vector g̃ characterizing the vibration of the
plate satisfies [2]:

g̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
+∞∑
n

⎛⎜⎜⎜⎜⎜⎝ R̃bot

R̃top

⎞⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝ 0

g̃0

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝ R̃bot g̃down

g̃down

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (15)

where the three-dimensional vector

g̃down =

⎡⎢⎢⎢⎢⎢⎣ +∞∑
n

(
R̃top R̃bot

)n
⎤⎥⎥⎥⎥⎥⎦ g̃0 =

(
3 − R̃top R̃bot

)−1
g̃0 (16)

is the product of the sum of the so-called Debye series by the
vector g̃0 .

The reflection and transmission coefficients are:

r = r̃0 + t̃T
top R̃bot g̃down , t = t̃T

bot g̃down . (17)

From Eqs. (12-17), it is obvious that the vector g̃ and the
coefficients r and t satisfy the boundary conditions:

Ñ( H ) g̃ − r hup = hdown , Ñ(−H ) g̃ − t hdown = 0 . (18)

(a)
Aluminium

ρ0 = 2700 kg·m−3 cL = 6420 m·s−1 cT = 3040 m·s−1
Water

ρ = 1000 kg·m−3 c = 1550 m·s−1
(b)

Longitudinal Transverse Rayleigh
Adimensional
slownesses

cT

cL

≈0.474
cT

cT

=1
cT

cR

≈1.069

Critical angles θL≈13.97˚ θT≈30.66˚ θR≈33.01˚

Table 1: Numerical values for aluminium and water:
(a) velocities and densities; (b) dimensionless slownesses

and critical angles.

2.4 Lamb waves

Both total transmission and zero reflection can be associ-
ated to Lamb wave generation, which are obtained for com-
plex frequencies [4], as shown on Fig. 4 for an aluminium
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Figure 4: Global transmission coefficient t for an aluminium
plate immersed in water, with respect to the

frequency-thickness product and the angle of incidence.

plate immersed in water (Tab. 1), where the 3D graph rep-
resents the transmission coefficient versus the angle of inci-
dence and the frequency-thickness product. On this image,
the dispersion curves of complex frequency Lamb waves are
plotted as well (dashed lines).

For these particular conditions, the interferences within
the plate between the upgoing and downgoing waves are of a
maximum intensity for Lamb waves, as illustrated on Fig. 5,
where the frequency-thicknessproduct is near 3.486mm·μs−1.
On this figure, the total energy associated with the reflected
(| r |2), transmitted (| t |2), upgoing (| g̃up |2) and downgoing
(| g̃down |2) waves are plotted versus the angle of incidence.
For the S2 , A1 and S0 modes, the upgoing and downgoing
energies are both very large. This reveals the existence of
strong interferences in the plate, which is the intrinsic nature
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of guided waves. Such interpretation would not be possible
by using the classical inhomogenous waves in the plate.

This behaviour is general for any points on the dispersion
curves, except close to the Rayleigh angle θR (see Fig. 5).
Let us examine in detail in the next section this unique area
where a Lamb wave can be generated at the Rayleigh angle
(see Fig. 4b).
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Figure 5: Global coefficients: | r |2 (reflection, solid), | t |2
(transmission, dash-dot), | g̃up |2 (upgoing energy, dotted) and

| g̃down |2 (downgoing energy, dashed) for the
frequency-thickness product 2 f h≈3.486mm · μs−1.

3 First reflections for isotropic plates

We focus in this section firstly on the first reflection/ref-
raction at the upper interface, characterized by the reflection
coefficient r̃0 and the vector g̃0, and lastly on the second re-
flection/refraction at the lower interface, with the transmis-
sion coefficient t̃1=t̃

T
bot g̃0 (see Fig.3).

Only the case of isotropic plates is considered such that
analytical calculations can be performed. An isotropic elastic
material is characterized by the longitudinal and transverse
velocities cL and cT, and the density ρ0 . The two critical
angles θL ,T satisfy sin θL ,T = c / cL ,T. The numerical values for
an aluminium plate immersed in water are given in Table 1.

3.1 Impedance matching at the upper inter-
face

The first reflection coefficient r̃0 can be expressed as fol-
lows:

− +

− − , θ < θL ,

−( + ) − ( − + )
−( − ) − ( − − )

, θL < θ < θT ,

( − )( −1)+ ( − )+ [( + )( + )− ( +1)]
( − )( −1)− ( − )+ [( + )( + )+ ( +1)]

,

θT < θ ,

(19)

where =(2 β2−1) 2, =−4 β2 βL βT and = ρ βL / (ρ0 βF ) are
dimensionless coefficients. The values and are equal
to exp

(
−2 βL ,T ω h / cL ,T

)
, respectively, h being the distance

between the interface and the z-origins of the nonstandard
inhomogeneous waves. These values are both real after the
second critical angle (θ>θT). β=cT sin θ / c, βF=

√
c2

T c−2−β2,
βL ,T=

√
c2

T c−2L ,T−β2 or −
√
β2−c2

T c−2L ,T .
Before the first critical angle (θ<θL), impedance match-

ing can occur, i.e. the reflection coefficient r̃0 can be equal
to zero, if the density ratio (ρ / ρ0) is high enough such that
it can be equal to β−1F βL( − ). For an aluminium plate im-
mersed in water, the density ratio is too low (see Fig. 6). Note
that in this case, only homogeneous waves are involved and
consequently the reflection coefficient is the same for each
choice of downgoing inhomogeneous elastic waves.

Between the two critical angles, one can demonstrate that
the reflection coefficient r̃0 can not be equal to zero. It can be
observed in Fig. 6 that the absolute value of this coefficient
is not very sensible to the frequency-distance product ( f h ).
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100�

Incidence angle θ [˚]

θL θT θR

∣ ∣ ∣ r 0∣ ∣ ∣ ,∣ ∣ ∣ r̃ 0∣ ∣ ∣

Figure 6: The absolute value of the first reflection
coefficient in the standard exponential basis (solid) and in
the nonstandard basis for an aluminium plate immersed in

water, the frequency-distance product ( f h ) having the
following values: 0 (dotted), 0.7mm · μs−1 (−·),
1.743mm · μs−1 (dashed) and 3.0mm · μs−1 (−··).

On the contrary, when the longitudinal and transverse
waves are both inhomogeneous (θ>θT), the absolute value
of this coefficient is sensible to the frequency-distance prod-
uct ( f h ). Indeed, one can demonstrate that a necessary and
sufficient condition of existence of a pair ( , ) such that
r̃0=0 [Eq. (19)] is:

− 2
�

2 − 2
�

2 and + � . (20)

The coefficients and are then expressed as follows:

=
2 ±

√[
( + )2 − 2

] [
2 − ( − )2

]
2 − (

2 − 2
) ,

=
2 ±

√[
( + )2 − 2

] [
2 − ( − )2

]
2 − (

2 − 2
) .

(21)

Note that 2 − 2 =
(
2 β2 − 1

)4 − [
4 β2 ( βL)( βT)

]2
is the

Rayleigh polynomial and that the solution of = corre-
sponds to the Rayleigh wave (in vaccum).
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corresponds to Condition (20) of existence of impedance
matching.

Provided that the sound velocity in the fluid is lower than
the velocity of the Rayleigh wave and that the density ra-
tio (ρ / ρ0) is not too high, we can observe on Fig. 7 that
impedance matching can occur if the incidence angle is either
in an interval (dotted line) around θR , the angle for which the
Rayleigh wave is excited, or in another interval (dashed line)
with upper bound θmax just lower than 90˚. The lower is the
density ratio, the narrower are these intervals. In each inter-
val, only one value of the frequency-distance product ( f h )
can be found such that Eq. (21) is satisfied. The first one
corresponds to an incidence angle near θR. For example, for
an aluminium plate immersed in water [2], θ≈33.087˚ and
( f h )≈1.743mm · μs−1 (see also Fig. 6). The second one cor-
responds to the incidence angle θmax, such that + = , and
h=0 ( = =1).

3.2 First transmission at the lower interface

Let us now consider the transmission coefficient t̃1 at the
lower interface, for an angle of incidence greater than the
second critical angle. This lower interface receives two non-
standard inhomogeneous waves generated at the upper inter-
face: a p-wave, characterized by the component g̃0 P

of the
vector g̃0, and a sv-wave, with the component g̃0 SV

. The sh-
component is zero because a sh-wave cannot be generated
from the fluid. These components are expressed as follows:

g̃0 P =
2 (1 − )(Y + )

√
X

<denominator of r̃0, Eq. (19.3)>
, (22)

g̃0 SV
=
−2 (1 + )(X − )

√
Y

<denominator of r̃0, Eq. (19.3)>
, (23)

and satisfy
∣∣∣ g̃2

0 P

∣∣∣ + ∣∣∣ g̃2
0 SV

∣∣∣=1− ∣∣∣r̃2
0

∣∣∣ (energy conservation).
Due to both the symmetry with respect to z=0 and reci-

procity, the transmission vector t̃bot at the lower interface sat-
isfies t̃bot=−g̃0 [2]. Consequently, the transmission coeffi-

cient t̃1 is equal to −g̃2
0 P
−g̃2

0 SV
. Thus, if there is a perfect

impedance matching at the upper interface, the energy will
be fully transmitted without any reflection provided than the
phases of g̃2

0 P
and g̃2

0 SV
are identical, i.e. the phases of (1+ X)2

and (Y+ )2 are the same. Unfortunately, this is not exactly
possible because both X and Y are reals between zero and
one for a (non-zero) plate thickness 2h.

However, in the case of an aluminium plate immersed in
water, a frequency-thickness product (2 f h )≈3.486mm·μs−1

and an incidence angle of 33.087˚ yield to a direct trans-
mission coefficient t̃1 of absolute value near 97.0% and to
a global transmission coefficient t of absolute value near
99.95% (see Fig. 4b).

4 Conclusion

In the case of incidence angles associated to Lamb waves,
total transmission and zero reflection are the result of large
interferences between the successive reflections/refractions
in the plate. In this latter case, the energy is progressively
released by the plate to the fluid by successive transmissions
with weak amplitudes. Up to now, the explanation of Lamb
wave generation by constructive interferences in the plate
held true only when no evanescent plane wave participates
to this multiple reflections. With the new definition of upgo-
ing and downgoing waves, introduced in this paper, this de-
scription is extended to any angle of incidence. An exception
is however observed. Indeed, at the incidence angle close to
that associated to the Rayleigh wave, the incident wave in the
upper fluid is totally transmitted to the lower fluid, without
any multiple reflection/refraction in the plate. In this latter
case, the plate seems to be really transparent.
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