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Inter-aural time differences (ITDs) constitute an important localization cue for azimuth estimation, particularly
below 1.5 kHz. As a first approximation, it is commonly assumed that ITDs do not depend on frequency. Never-
theless, Kuhn (JASA, 1977) shows theoretically and experimentally that due to diffraction effects around the head,
ITDs depend on frequency. Low frequency ITDs should thus theoretically be 1.5 times greater than high frequency
ones. To study this point, different classical tools are adapted to compute the ITD variations with frequency: onset
time differences, maximum of the cross correlation, and phase differences. The reliability of each tool regarding
ITD computation is assessed on the basis of head-related transfer functions (HRTFs) coming from a spherical head
model. The effective frequency dependence of ITDs is finally shown by analyzing real animal HRTFs.

1 Introduction
Mammals and birds use mainly Interaural Time differ-

ences (ITDs) and Interaural Level Differences (ILDs) to lo-
calize sound sources in their environment. Even though it is
commonly accepted that the ILD conveys information through
location-dependent variations across the audible spectrum,
the ITD is usually thought of as a broadband quantity, that
is, it does not depend on frequency, and is often reported as
a single quantity.

The view of the ITD as a single broadband quantity is a
good first approximation of the high frequency limit of the
ITDs, as supported by theoretical studies [3]. However, a
more detailed analysis of the acoustics of the head indicates
that ITDs vary significantly with frequency. As an exam-
ple, [3] considered a spherical head model with rigid bound-
aries, and showed that in this case the ratio of the high to
the low frequency ITDs is equal to 2/3 near the horizontal
plane. Accordingly, given that a typical cat hears a maximum
high-frequency ITD of about 350 µs, then the maximum low-
frequency ITD is of about 450 µs, which is a sufficiently high
difference for the cat to distinguish.

Additionaly, neurophysiological insight shows that the
ITD is extracted in a frequency-dependent way. Indeed one
of the first stages of the auditory processing is a form of
spectral decomposition induced by the cochlea, and the ITDs
are extracted downstream, by neurons that display sensitivity
only in a restricted frequency band. This raises the ques-
tion of the relevance of the variations of ITDs across the fre-
quency spectrum to animal behavior.

To be able to assess the functional advantage (if any)
of the frequency dependence of the ITDs, new frequency-
dependent methods of ITD estimation need to be devised.
Then one must make sure that the observed variations are not
due to estimation error, which is done in the present study by
quantifying the robustness of the different methods to mea-
surement noise. Finally, using synthesized cat HRTFs, it is
shown that the variations of ITDs can help disambiguate be-
tween sources originating from the front or the back of the
interaural axis, and also convey proprioceptive information,
i.e. information about the animal’s body position.

2 Frequency-dependent ITDs
Usual definitions of the ITDs distinguish between the in-

teraural phase delay and the interaural group delay, in the
present study, ITDs are defined as the phase delays. Those
have already been shown to depend on frequency, both in
theoretical and experimental studies [3, 1, 5]. In his classi-
cal textbook, Blauert [5] reports frequency-dependent inter-
aural phase delays, but the apparent noise makes it hard to
conclude on a potential systematic variation of the ITD with

frequency. For the purpose of the present study, a review
of existing frequency-dependent methods to compute ITDs
is presented, and all methods are evaluated in terms of their
robustness to measurement noise.

A complete linear representation of the acoustical effects
of the head, body, etc. on the incoming wavefield is given
in the frequency domain by Head Related Transfer Func-
tions (HRTFs, or alternatively impulse responses, HRIR, in
the time domain), a pair of filters for every position usually
lying on a sphere around the subject’s head. Those filters
can be either experimentally measured, or computed theoret-
ically for simple geometrical shapes (e.g. for a sphere [1])
or more complex ones [2]. The methods described here ex-
plain how to obtain frequency-dependent estimation of ITDs
offline from those filter representations, i.e. not on ongoing
signals.

Three methods were considered, two based on the tem-
poral representation (HRIRs), and one on the frequency rep-
resentation (HRTFs). They were adapted from classical es-
timators to yield frequency-dependent results. For the time-
based methods, the HRIRs are first passed through a bank
of bandpass filters with variable center frequency (CF), and
then the classical (broadband) method is applied to the re-
sult. The filterbank used here is a Gammatone filterbank be-
cause it is known to be a simple yet good representation of
the cochlear spectral decomposition. Obviously, any other
type of bandpass filter would yield similar results, provided
is has approximately the same bandwidth.

2.1 Onset time differences
A natural way to estimate broadband ITDs is to compare

the times of arrival of the waves at the eardrum. This can
be done on HRIRs by computing the onset times of the two
impulse responses. Typically, a threshold is arbitrarily picked
α ∈ [0, 1], and the onset time of each impulse response is
computed as the time when a fraction α of the maximum of
the impulse response is reached by the sound pressure:

T Onset(hr) = min
t
{hr(t) ≤ αmax

s
(hr(s))} (1)

An ITD then follows by ITDOnset = T Onset(hr)−T Onset(hl). As
mentioned ealier, a frequency-dependent equivalent of this
estimator is devised by filtering the HRIR prior to computa-
tion with a Gammatone filterbank. Noting hCF

l,r (t) the HRIR
filtered through a Gammatone filter with center frequency
CF, one can then define:

ITDOnset(CF) = T Onset(hCF
r ) − T Onset(hCF

l ) (2)

2.2 Cross-correlation
Another popular estimator of ITDs is the peak of the cross-

correlation function of the two HRIRs, which is known to
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represent the difference in phase delays of the two filters [6].
It can be similarly adapted to compute frequency-dependent
ITDs by first passing the impulse responses through a bank
of Gammatone filters:

ITDXcorr(CF) = argmaxτ

∫ +∞

−∞

hCF
L (t) × hCF

R (τ + t)dt (3)

2.3 Phase differences
Finally the definition of ITD as the interaural phase delay

difference suggests an immediate estimator of the frequency-
dependent ITDs, that is the difference in phases between the
two HRTFs converted into time delays. Those can be ex-
tracted by computing the unwrapped phase (the ∠(.) operator)
of the ratio of the two transfer functions:

ITDPhase(CF) =
1

2πCF

〈
∠

(
HRTFr( f )
HRTFl( f )

)〉
Γ

(4)

In order to be able to compare this estimation to the two pre-
viously described ones, phase delays are smoothed around
the same center frequencies, with a weighing equal to the fre-
quency response of a Gammatone filter (the < . >Γ operator).
This ensures that the same frequency components are pooled
when computing the ITDs in this method, as compared to the
previous ones.

3 Methods: Assessing the robustness
of the estimators

To compare the relative performance of the estimators
derived above when facing different levels of measurement
noise, a completely noise-free HRTF dataset was needed.
Fortunately, it has been shown that HRTFs were well approx-
imated by a spherical model with rigid boundaries, which has
the advantage of having an analytical solution [1]. This al-
lowed us to simulate surrogate experiments where measure-
ment error was modeled by an additive gaussian white noise
ξ. All impulse responses were normalized so that the front
position (0◦azimuth) has an RMS value of 1, and then the
signal-to-noise ratio is defined as follows:

NSR =
RMS(ξ(t))

RMS(h(θ, t))
(5)

Where θ is the azimuth of the considered HRIR, and the RMS
is defined as usual as:

RMS (h) =

√
1
T

∫ T

0
h(s)2ds (6)

ITDs were then computed using the methods described above,
and compared back to the original noise-free solution. All
the HRTFs were generated for 1024 frequency points, at a
samplerate of 44.1kHz. This simulation was done 25 times
for each of 36 evenly distributed positions on the horizontal
plane to the left of the sphere, at a distance of 2 meters.

Comparing the result of those experiments to the refer-
ence ITD (for which NSR = −∞ dB), biases, standard de-
viations and confidence intervals could be derived at differ-
ent frequency points, in a manner independent of the azimuth
(and of the absolute mean value of the ITD). Formally, statis-
tics reported here were computed on the signed error term E
defined for a given azimuth θ, center frequency and NSR:

E(θ,CF,NSR) = ITD(θ,CF,NSR) − ITD(θ,CF,−∞) (7)

4 Results: Estimation performance

4.1 Non-biasedness
A first check of the validity of our approach is to test that

our estimators indeed are non biased, this means that the ex-
pectation of the estimator is equal to the theoretical value. In
our framework, this means that the error term E has an ex-
pected value of zero. Reported in Figure 1 are the histograms
of error expectations for the three methods, pooled over dif-
ferent NSR ranges. As can be observed the mean is almost
always zero, and in only a few cases does the mean diverge
significantly from zero.

Additionally, only at very low NSRs, well below the usual
NSRs encountered with modern digital recording hardware,
does one find biases that are more than a few microseconds.
Most of those biases are negative, indicating that all the meth-
ods are biased towards a smaller absolute value for the ITD.
In many of those cases, this is due to an artifact that is termed
“DC failure” in this study, and will be discussed in more de-
tails in the following section.

Figure 1: Histograms of biases. Biases are here defined as
the mean over frequencies and positions of the error term
devised in Eq. 7. Each row pools three different NSRs’
biases on a single histogram. Columns are the different

methods. For low NSRs, the biases have a mean of zero, but
as the NSR goes up, the different methods show a bias

towards smaller absolute ITDs.

4.2 Estimator dispersion
Considering the standard deviation (STD) of the error

term over all positions and frequencies emphasizes some qual-
itative differences between the different methods, as reported
in Figure 2. Yet, the first conclusion one can draw out of
these simulations is that the STD is quite insensitive to NSR,
indeed only at extreme noise levels (NSR bigger than -20 dB)
do the STDs get bigger than 10 µs (in our case 2.5% of the
maximum ITD).

The 1/f behavior of the STD of the Phase method estima-
tor, and to a lesser extent of the Xcorr method can be easily
explained. Indeed, this ITD value is obtained by dividing
the average IPD over a certain window by the frequency. If
the interaural phase value is non-zero for a few close-to-DC
( f = 0) components of the spectrum, then the resulting esti-
mation will diverge as CFgets close to zero. This effect is all
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Figure 2: Estimation performances: The different panels
display the standard deviation of the different estimators as a
function of frequency and NSR. The first panels displays the

standard deviation for the Onset method, it shows a
more-or-less constant variation with NSR, even though at

high or low frequencies the STD tends to be bigger. For the
other two methods, the STD seems to follow a 1/f behavior.

the more problematic as signal processing hardware usually
is unreliable in the very low frequency range.

Figure 3: ITD computation failure: Indicates the proportion
of abnormally high values for low frequency ITDs, termed
“DC failure” (see text). These failures happend more often
in phase-based methods than in the onset time differences

method.

This particular sensitivity on the few first values of the
complex spectrum can also lead to bigger artifacts, termed
“DC failures” in the rest of the study. Those “DC failures”
typically occur when the ITD magnitude is quite low, e.g. for
low absolute azimuths, for which the interaural phase spec-
trum is dominated by that of the noise. To assess whether a
computed ITD function was indeed a “DC failure”, a thresh-
old on the error term E evaluated at the lowest CF was set
to 1ms. This allowed us to report failure rates as a function
of NSR in the Figure 3. Indeed, for the two phase-based
methods (Xcorr and Phase), this problem arises at moderate
NSRs, and these methods yield abnormally high estimations
for a significant proportion of the positions. This constitues
a potential problem when directly using phase-derived meth-
ods to compute frequency-dependent ITDs, especially in the
lowest frequencies and for low ITDs and low NSRs.

4.3 Confidence intervals and broadband vari-
ations

An additional statistic that was derived from the simu-
lations is the 95% confidence intervals across the spectrum
for all the positions. Those are a good representation of the
variability of the measures, and their trustworthiness. Re-
ported in Figure 4 are the ITD functions for four positions on
the horizontal plane, for a spherical head model and along-
side are plotted the confidence intervals for every measure.
The point here is to show visually that the ITD variations ob-
served across the audible spectrum are indeed bigger than the
confidence intervals themselves. This constitutes a concrete

Figure 4: ITD curves for a spherical head model with a
20cm diameter. Each row is a different NSR, and each

column a different estimation method. Positions shown are
0 ◦, 30 ◦, 60 ◦and 90 ◦. Gray areas indicate numerically

computed 95 % confidence intervals

argument that the ITD are indeed dependent on frequency,
because the variations observed are systematic, and bigger
than the expected noise. Moreover, in modern experimental
setups, the NSR can be as low as - 60 dB, range in which
the estimator STD is expected to be too small to be noticed.
Hence HRTF-derived ITD curves can indeed be trusted, pro-
vided that the signal-to-noise ratio is high enough.

5 Discussion: Investigating cat HRTFs
The cat is a widely used biological model when study-

ing the neurophysiological basis of sound source localiza-
tion. As was pointed out earlier, in such studies the ITD is
often implicitly assumed to be a fixed quantity with respect to
frequency, even though it has been shown that ITD-sensitive
neurons’ responses are frequency-dependent [4]. Hence it is
of special importance to work on a more precise characteriza-
tion of the ITDs for this species and moreover to try and un-
cover the functional advantage of such frequency variations,
that is do those variations convey any more information than
the pure, broadband quantity.

For this purpose, HRTFs were derived from 3D models
(see Figure 5) of a stuffed cat using a previously published
Boundary Element Method [2]. This study restricts itself to
the analysis of positions on the horizontal plane, with a res-
olution of 5 ◦in azimuth. Since the filters were generated us-
ing numerical methods, they can be though of as completely
free of noise and measured in absolutely anechoic conditions.
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Moreover, since those HRTFs were based on 3D mesh mod-
els, it was possible to change the position of the cat head, as
it was significantly slanted in the original stuffed animal.

Figure 5: Cat 3D models top view: Angles are measured
relative to the body axis, in the trigonometric sense (positive
θ to the left of the animal). Given our conventions, the head

points -45 ◦to the right of this axis. Keep in mind that
positive ITDs come from sources to the left of the cat.

5.1 Front-back disambiguation
Reported in Figure 6 are the frequency-dependent ITDs

as computed on our cat HRTFs. The gray dashed line cor-
responds to the upper limit of the phase locking in the cat
auditory nerve, this gives an order of magnitude of the range
where the cat actually processes time cues such as the ITD,
i.e above ≈ 5kHz the cat cannot extract ITDs.

As could have been expected the ITDs for the front hemi-
sphere are in qualitative agreement with the ones of the spher-
ical model, displaying the same monotonously decreasing
trend. Noticeably, though, the ITD curves seem to be equal
up to a constant multiplicative scaling factor, i.e. the they
never cross. This means that they do not convey more infor-
mation than the pure broadband ITDs (in our framework, the
high-frequency limit of the ITD curve).

Nonetheless, when considering ITDs on the whole hor-
izontal plane (including the back hemidisc), one can draw
different conclusions. A simple symmetry assumption im-
plies that if the animal were a perfect sphere then the back
ITDs would be exactly equal to the front ones. Multiple de-
viations to those assumptions hold for the cat, namely the
presence of the body, and the fact that the ears do not lie on
a diameter of the sphere. This implies that the ITDs for po-
sitions placed on the back of the animal should be different,
and especially in their frequency variations, as shown on Fig-
ure 6. The back ITDs indeed display sharper transitions from
the low-frequency to high-frequency behavior, especially for
intermediate positions. Additionally, this variation occurs in
a frequency range where the cat is known to process ITDs,
implying that this cue could be taken advantage of to disam-
biguate front and back originating sound sources.

5.2 Proprioceptive information
Another striking effect on the ITD variations across the

spectrum is the fact that it depends on the body posture of the
animal. For sound sources originating from the front of the

animal, the effect is reduced, as could be expected, because
the acoustic wave does not encounter the body before reach-
ing the ears of the animal. Notice that this would not neces-
sarily hold if we were to consider HRTFs in a non-anechoic
setup, as the body could get in the way of acoustic reflec-
tions. Hence the only effect seen here is a global shift of the
ITD curves to more positive ITDs (because the head points
to the right), with no significant deviation from the spherical
model.

Figure 6: ITDs in the cat: effects of source direction and
body posture: The vertical dashed line represents an

indication of the upper limit of the ITD processing range of
the cat. Bottom two panels represent the ITD values when

the head of the cat is slanted, Upper panels when the head is
aligned with the body. Left columns are the ITDs for

positions in the front of the cat and right panels when the
source is placed on the back of the animal. Notice how the

body of the cat induces dramatic variations in the ITDs
because of additional diffraction effects.

For sound sources originating from the back of the an-
imal, ITD curves display a more complicated pattern. The
most proeminent effect is that for sound sources that lie on
the median plane (orthogonal to the interaural axis, here -
45 ◦) the ITD is zero in the high and low frequencies, but it
displays a significant variation in between, due to diffraction
on the body. For left sound sources (positive ITDs), the ef-
fect is very reduced, and since the acoustic wave only sees
the head, the ITD pattern is very much similar to that found
for the spherical model, or the animal for frontal positions.
As the source moves right though, the pattern seen is more
complicated, and indeed significantly different from the ex-
pected one with a straight head.

6 Conclusion
This study has shown that there were multiple ways of

estimating frequency-dependent ITDs. Amongst the meth-
ods presented here, some have a higher robustness to noise.
The onset estimator has the undisputable advantage of show-
ing only a moderate dependence of estimation performance
with respect to frequency, i.e. it performs well in the whole
audible spectrum. The natural phase estimator and the cross
correlation estimator qualitatively show a 1/f behavior in the
dependence of the estimation error. But the phase method
has a hard time evaluating relatively small ITDs at low NSRs,
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and thus might not be suited to computing the ITDs on, say,
smaller mammals like the cat or the gerbil, especially at low
frequencies.

Nevertheless, they all agree on the fact that the ITD is not
a fixed quantity with respect to frequency. This argues for
rethinking this binaural cue to take into account frequency
variations.

Additionaly, those frequency variations might, much as
the ILDs, convey some useful information in their frequency
variations. Indeed in the example of cat HRTFs, the pres-
ence of the body for sources coming from the back impose
dramatic changes in the ITD vs. freq patterns. This could
enable the animal to use time cues to disambiguate sound
sources coming from the back. Moreover, it seems that the
body posture also has an effect on the ITDs. Whether this
is an advantage (ITD variations encode an additional dimen-
sion of the stimulus) or a drawback (ITDs are not robust to
animal position change) is up for discussion.

These results advocate for a reconsideration of the ITDs
as a frequency-dependent quantity. Our results strongly sug-
gest that these variations convey both proprioceptive infor-
mation, and additional information about the source’s local-
ization (namely the front vs. back disambiguation). Alto-
gether these effects should be taken into consideration when
investigating the mamallian ability to localize sound sources
based on binaural timing cues, design localization algorithms
or rendering 3D sounds.
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