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Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician.

A set of non-linear equations connects the control parameters (mouth pressure, lip force) to the system output,

usually considered as the mouthpiece pressure. Clarinets can then be studied as dynamic systems, their steady

behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless

straight cylinder is a dramatic yet common simplification that allows for simulations using non-linear iterative

maps. Many important aspects such as the kind of regime (static, oscillating), values of amplitude and periodicity

have been predicted from such an approach. However, the existing studies focus mainly on the steady state,

disregarding important features such as the attack transient. This presentation discusses transient behavior of

these simplified clarinet models when the control parameters follow simple laws of variation with time. In this

case, unexpected behavior can occur, such as bifurcation delays, meaning that oscillations do not start when the

mouth pressure reaches the threshold value predicted by static bifurcation theory. This paper presents a first

analytical/numerical study of bifurcation delay in clarinet-like instruments.

1 Introduction
One of the interests of mathematical models of musical

instruments is to be able to predict certain characteristics of

the produced sound given the gesture performed by the musi-

cian. In the case of a clarinet for instance, the amplitude, fre-

quency or spectral content (the sound parameters) can be to a

certain extent, determined as a function of the blowing pres-

sure and lip force applied to the reed (the control parameters).

A basic model, such as the one introduced by Mc. Intyre &

al. [1] allows to compute the amplitude of the oscillating

resonator pressure from the knowledge of these two control

parameters, giving results that follow the major tendencies

observed in experiments.

However, most studies of these models are restricted to

a steady state analysis of the oscillation. They focus on the

asymptotic amplitude regardless of the history of the system.

In terms of the timbre perceived by a listener, this is an in-

complete view, since the transients of the sound are probably

as important as the characteristics of the steady state itself.

Ideally, it would be interesting to predict the transient char-

acteristics of the sound for a particular time evolution of the

control parameters.

This work focuses precisely on the transient characteris-

tics of a very simplistic model [2] when one of the parameters

(the blowing pressure) increases with time. In these condi-

tions, it is known from the so-called bifurcation delay theory

that the beginning of the oscillation can be considerably de-

layed [3]. A similar effect is observed in simulations [4] and

experiments [5] on the clarinet, although not to the same ex-

tent as predicted by the dynamic theory.

This article starts by summarising the basic model of the

clarinet. The theoretical results of dynamic bifurcation the-

ory are then applied to this model, and finally we put the the-

oretical results in perspective by comparing them to numer-

ical simulations and analysing their sensitivity to numerical

precision and the slope of the mouth pressure increase.

2 Elementary model of a clarinet
This model divides the instrument into two elements: the

exciter and the resonator. The exciter is modeled by a nonlin-

ear function F also called nonlinear characteristic of the ex-

citer. The resonator (the bore of the instrument) is described

by its reflection function r(t).
In the case of a clarinet the coupling between the two ele-

ments allows to compute the state of the instrument through-

out all values of time t. The state of the instrument model

can be fully described by two variables: the pressure p(t) in-

side the mouthpiece and the flow u(t) created by the pressure

imbalance between the mouth and the bore input.

The solutions p(t) and u(t) depend on the control param-

eters: γ representing the mouth pressure and ζ which charac-

terizes the intensity of the flow. The nonlinear characteristic

is provided by the Bernoulli equation describing the flow in

the reed channel [6, 7].

Mathematical analysis of this model starts off from the

extreme simplification of considering a straight, lossless (or

losses independent of frequency) resonator and the reed as an

ideal spring [2, 8, 9, 10, 11, 12]. With these assumptions, the

reflection function becomes a simple delay with sign inver-

sion. Using the variables p+ and p− (outgoing and incoming

waves respectively) instead of the variables p and u, the sys-

tem can be simply described by an iterated map [2] :

p+n = Gγ
(
p+n−1

)
. (1)

The iteration function Gγ is obtained by transforming the

nonlinear characteristic F. An explicit expression was de-

termined by Taillard [13] and it is plotted in Figure 1 for

a particular value of the parameters γ and ζ. This function

(like the function F) depends on the control parameter γ rep-

resenting the mouth pressure. The time step n corresponds to

the round trip travel time τ = 2l/c of the wave with velocity

c along the resonator of length l.
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Figure 1: Iteration function Gγ for γ = 0.42 and ζ = 0.6.

This simplistic model is certainly unable to describe or

predict the exact harmonic content of the sound, or the in-

fluences of such important details as the reed geometry and

composition or the vocal tract of the player. However, using

the universal properties of the iterated maps [14], useful in-

formation about the instrument behavior can be drawn from
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the study of the iteration function. So far, these studies come

from the static bifurcation theory, which assumes that the

control parameter γ is constant. For example, it is possible to

determine the steady state of the system as a function of the

parameter γ, and to plot a bifurcation diagram. The oscilla-

tion threshold γt is, for a lossless model:

γt =
1

3
, (2)

For all values of the control parameter γ below γt the series

p+n converges to a single value p+∗ corresponding to the so-

lution of p+n = p+n−1, hence of p+∗ = Gγ (p+∗). p+∗ is the

fixed point of Gγ. The fixed point depends on the value of γ
according to:

p+∗(γ) =
ζ

2
(1 − γ)√γ. (3)

When the control parameter γ exceeds γt the fixed point

of G (the static regime) becomes unstable and the steady state

becomes a 2-valued oscillating regime. Figure 2 shows an

example of the bifurcation diagram with respect to the vari-

able p+.
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Figure 2: Graphical representation of the static bifurcation

diagram for ζ = 0.5.

To sum up, most of the studies using the iterated map ap-

proach, with the static bifurcation theory, are restricted to the

steady state. It can predict the asymptotic (or static) behav-

ior of an ideal clarinet as a function of the mouth pressure

when it is constant. In other words, static results are ob-

tained by choosing a value of γ, letting the system relax to

its final state, and repeating the procedure for each value of

γ. This procedure avoids the phenomenon of bifurcation de-
lay which is observed in numerical simulations, for instance

(section 4).

3 Slowly time-varying mouth pressure
In this section we investigate the consequences of a linear

growth of the control parameter γ (the parameter ζ is always

constant) on the behavior of the ideal clarinet, henceforth de-

scribed by the following system of equations:

⎧⎪⎨⎪⎩ p+n = G
(
p+n−1, γn

)
(4a)

γn = γn−1 + ε. (4b)

A slowly varying parameter implies that ε � 1. We high-

light the phenomenon of bifurcation delay, Section 3.1, and

explain how it can be analytically predicted, Section 3.2.

3.1 Bifurcation delay
In the static case (γ is a constant) and in the dynamic

case (γ increases linearly), when γ > γt the system is un-

stable. Therefore, the first intuitive hypothesis about the dy-

namic behavior of the system might be to say that the orbit of

the series p+n (described by the system (4)) follows the static

bifurcation diagram. Simulations of the system (4) under-

mine this hypothesis. Indeed, Figure 3 shows that when γ
varies the bifurcation point is shifted from γt to a value γdt

called dynamic oscillation threshold. The difference between

γt (called now static oscillation threshold) and γdt is the bi-

furcation delay.
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Figure 3: Representation of the series p+n for ε = 10−4 and

ζ = 0.5, comparison between the series p+n and the static
bifurcation diagram as functions of γn.

The phenomenon of bifurcation delay can be interpreted

as an ”accumulation” of stability during the time for which

γn < γt, when the system is stable [15, 16]. The accumu-

lation of stability has to compensated by going beyond the

static bifurcation point γt for a certain time.

Static bifurcation theory is not sufficient to predict the

bifurcation delay. Dynamic bifurcation theory [3] is able to

produce some results about the behavior of such systems.

3.2 Analytical results from dynamic bifurca-
tion theory

The behavior of the dynamical system (4) can be stud-

ied mathematically thanks to the dynamic bifurcation theory

based on the non-standard analysis [3, 17, 18]. Non-standard

analysis is a branch of mathematics that allows to deal rig-

orously with the infinitesimal numbers, in our case the in-

finitesimal number considered is the slope ε, the increase rate

of a parameter (for instance γ) per iteration. Dynamic bifur-

cation theory allows to describe the asymptotic behavior of

the system when ε << 1 in analytical cases. Furthermore,

these results imply that all the calculations are performed ex-

actly (without any added noise or with infinite precision). We

shall return later to this point (Section 4).

Even if the non-standard analysis is very technical, the re-

sults it produces may have simple expressions. One of them

is the prediction of the dynamic oscillation threshold γdt. Re-

minding that the nonlinear function G is defined by the rela-

tion p+ = G(−p−, γ), the dynamic oscillation threshold γdtis

a solution of the following equation:
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∫ γdt

0

ln

∣∣∣∣∣− ∂G∂p−
[
p+∗(u), u

]∣∣∣∣∣ du = 0. (5)

The demonstration of equation (5) is made in [3]. The

numerical solution of this equation is plotted in Fig. 4 as a

function of the parameter ζ.
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Figure 4: Graphical representation of the dynamic

oscillation threshold γdt (solid line) and of static the

oscillation threshold γt (dashed line) as functions of the

parameter ζ.

Unlike the static oscillation threshold γt, the dynamic one

depends on ζ. More precisely, we can see that the dynamic

oscillation threshold tends to 1 when ζ tends to 0 and then

decreases when ζ increases, but it is always far above γt =

1/3.

The second (and counter-intuitive) result about the dy-

namic oscillation threshold is that it is independent of the

slope ε. However, as said before, equation (5) is valid if

ε << 1 and if there is no noise in the system. No noise in

the system means that if we want to compare analytical re-

sults with simulations, we have to use an ”infinitely” high

precision1. The orbit of p+n plotted in Figure 3 is obtained

with mpmath, the arbitrary precision library of Python, us-

ing a precision equal to 5000. Above this precision, γdt does

not vary considerably. Comparing Figure 3 and Figure 4,

we can see that γdt seams to be predicted by equation (5),

i. e. γdt = 0.9.

In section 4 we perform a more quantitative comparison

between the analytical prediction of the dynamic oscillation

threshold γdt and its estimation made on simulation.

4 Comparison between analytical re-
sults and simulations

The purpose of this section is to evaluate the precision

and of values of ε required for a good agreement between

analytical results and simulations. We study the influence

of the precision used and of the value of the slope ε on the

bifurcation delay.

1The precision is the number of decimal digits used by the computer.

4.1 Influence of the precision
This paragraph shows that the bifurcation delay has an

exponential sensitivity. It thus depends on the precision used

in the simulations.

To highlight this dependence, we estimate the dynamic

oscillation threshold on the simulations of the system (4).

The dynamic oscillation threshold estimation is defined as

the value of γ (noted γosc) when the series p+n begins to os-

cillate. Results are plotted for different precisions and com-

pared to the analytical value in Figure 6.
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Figure 5: Graphical representation of γosc for different

precisions (prec. = 7, 15, 100, 500 and 5000) and for

ε = 10−4. Results are also compared to analytical static and

dynamic thresholds: γt and γdt.

The first observation we can do on Figure 5 is the very

high dependence of γosc on the precision. We can also notice

that all the values of γosc are between γt and γdt. For the low-

est precision (prec. = 7) the bifurcation delay disappears and

γosc = γt. The precision must be very high (prec. = 5000) to

reach γosc = γdt. Therefore, γdt can be interpreted as the limit

of the bifurcation delay when precision tends to infinity. In

the cases with intermediate precisions (prec. = 15, 100 and

500) the bifurcation delay increases with the precision.

4.2 Influence of the mouth pressure slope
To study the influence of the slope, γosc is plotted against

ε in Figure 6, for different precision values.

As above, for the lowest precision (prec.=7) the bifurca-

tion delay disappears when ε is sufficiently small. Indeed,

γosc is constant and equal to γt. Then γosc recurs and in-

creases with ε. The case with the highest precision (prec.

=5000) simulates an analytic case which would correspond

to an infinite precision. We can see that if ε is sufficiently

small γosc is constant and equal to 0.9 as predicted by equa-

tion (5). Then γosc decreases when ε increases. In the cases

with intermediate precisions (prec. = 15, 100 and 500) the

curve of γosc is first increasing and then reached the curve

corresponding to the higher precision.

The value of γosc also depends on the parameter ζ. The

general form of graphic represented in Figure 6 is the same

whatever the value of ζ. The value of γosc is just smaller
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Figure 6: Graphical representation of γosc as a function of ε
for ζ = 0.5 and using five values for the precision. A

logarithmic scale is used in abscissa.

when ζ increases, except in the lower left side of the graphic

because γosc cannot be smaller than γt.

5 Conclusion
The dynamical study of a nonlinear system is a comple-

ment to the usual static study. It may predict phenomenons

(bifurcation delay and dynamic bifurcation) not explained

by the static study but observed by simulations and experi-

ments. The phenomenon of bifurcation delay extends upon

a vast operating rage of the model: 1/3 < γdt < 1, depend-

ing of two parameters: the precision used in simulations and

the slope of the linear growth of γ. Indeed, we saw, in dy-

namical case, that the system is very sensitive to this two

parameters. This work allows to understand the difficulties

encountered in studies aimed at comparing static oscillation

threshold to experimental/numerical ones. A companion pa-

per [5] presents a first experimental study of bifurcation de-

lay in clarinet-like system. These preliminary experimental

results confirm the tendencies observed in the present paper.
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riod doublings and chaos in clarinetlike systems. EPL
(Europhysics Letters), 1(6):295, 1986.
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