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This article deals with determination of the equation of motion of 1D and 2D structures from the measurement of
the steady-state vibration response. The method is based on the modified IWC and McDaniel methods ([1]-[4]).
The novelty is that we consider that the equation of motion of the structure is not known apriori. We can choose
from some predefined set of models which could describe the structure. The choice of the best (optimal) model
is achieved with the Bayesian information criterion. The method is applied to a thin aluminium beam under axial
tension and to a back-board of an acoustic guitar. It is shown that in these cases the Bayesian information criterion
provides useful means for choosing the most pertinent model for given data.

1 Introduction

This paper is dedicated to a model selection problem. The
vibration problems are difficult to solve exactly, that is why
there are many approximate models which are easier to solve
but they neglect some physical phenomena. The obvious mo-
tivation for the model selection is to choose the simplest one
which describes sufficiently well the physical problem. Let’s
consider for example a problem of calculation of the eigen-
frequencies of a beam pinned at its ends. The most precise
would probably be the 3D FEM analysis with a large number
of degrees of freedom. If we restrain to analytical models
in 1D, we can use the Timoshenko beam model or the sim-
pler Euler-Bernoulli beam model (if the beam is sufficiently
thin). We could also consider that the pinned ends contribute
to the axial tension in the beam and add a tensile term in the
models of Timoshenko and Euler-Bernoulli. If we knew all
the necassary parameters describing those models we would
choose the most precise model. But, generally, this is not
the case. More often we want to determine those parameters
by some inverse technique. This paper deals with a method
called Bayesian information criterion (BIC) applied to the
problem of detemination an appropriate (optimal) model in
vibration problems of beam and plates.

2 McDaniel inverse method for 1D prob-
lems

Before we can proceed to the model selection we must
have some mathematical method which can fit the data with
given model and provide the objective residuals. McDaniel
[1] used for the first time a pseudo-local inverse method to
detemine the damping factor of the Euler beam structure.
The basic idea of this method as follows. As an example
we consider the equation of motion of an Euler beam in fre-
quency domain

EI
d4u
dx4
+ ρLω

2u = 0 (1)

where EI is the beam stiffness, ω is the angular frequency
and ρL is the linear density. If there are no external forces
in the observed region, the steady-state displacement field u
must take the following form of the general solution

ugen(EI, ρL) = α1sin(kx)+α2cos(kx)+α3sinh(kx)+α4cosh(kx)
(2)

where the wave vector k = 4
√

(ω2ρL)/(EI). Whatever
are the boundary conditions (which are often unknown) the
real solution (dependent on the boundary conditions and ex-
citation) is included in the general solution, in other words
u ⊂ ugen. We can define two functional operators: Pgen -
projector on the general solution space, Qgen - projector on

the space orthogonal to the general solution functional space.
If the equation of motion describes perfectly the physical
reality and we know its parameters EI/ρL then the u lies
completely in the functional space ugen, so Pgenu = u and
Qgenu = 0.

But in the realistic case, the Eq.(1) does not satisfy com-
pletely the real solution of the physical problem and we do
not know exactly its parameter EI/ρL. So we can define the
residual function

r = Qgenu (3)

which shows the distance between the general solution
and the measured displacement field. The optimal value of
parameter EI/ρL is found by minimizing the norm of the
residual r

(EI/ρL)∗ = argmin
EI/ρL

‖r‖ (4)

In other words we optimize the general solution of the
Eq.(1) in order to fit as closely as possible the measured data.
The presented approach can be applied to a discreet prob-
lem in the following way. Let’s consider the measured points
x1, .., xN . Then the general solution in the discreet i-th point
can be calculated using matrix Ψ

u(i)
gen = Ψi jα j (5)

Ψi,∗ = [sin(kxi), cos(kxi), sinh(kxi), cosh(kxi)] (6)

Figure 1: Schematic representation of the relations between
the measured data u, general solution (model) ugen,

projected data on the space of the general solution and the
residual.

It can be shown that in the discrete case, the projector to
the general solution space is a square matrix Pgen = ΨΨ

−1

and the projector to the orthogonal (residual) space is Qgen =

I−ΨΨ−1. The inverse of theΨmatrix is meant in the pseudo-
inverse sense, because this matrix is strongly rectangular.
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The final residual vector of the inverse method can be de-
fined as

r∗ = Q∗genu (7)

where the Q∗gen is the resulting residual operator opti-
mized for the solution given by Eq.(7) and u the displace-
ment function u measured in discrete measurement points.
The simplified schematic representation of the problem in
two dimensions (two measurement points) is shown at the
Figure 1. The measurement point u remains fixed, while it
is the general space (represented by line ugen) which is opti-
mized to diminish the norm of the residual vector r.

All the above considerations can be applied to any math-
ematical model of a vibration of 1D structures which can be
described by the displacement function u and one ordinary
differential equation (this equation should be self-adjoint).
In this way we can deal with the string, thin and thick beams,
thin sandwich composite beams and hybrid equations be-
tween beam and string (typically thick bass guitar string or
beam under heavy tension).

3 Modified IWC method for 2D prob-
lems

The McDaniel method cannot be used directly for equa-
tions of motion describing vibration in 2D because the gen-
eral solution does not exist in the closed form. It can only be
approximated by some set of functions which are all particu-
lar solutions of the homogenous equation. Let’s consider the
most simple Kirchhoff plate equation of motion defined by

DΔu + ρSω
2u = 0 (8)

where D is the plate stiffness and ρS is the surface density
of the plate. Berthaut [2] was the first who studied the cor-
relation between the solution of the Eq.(8) and plane waves
travelling in different directions. He showed that his method
called Inverse Wave Correlation (IWC) can be used for es-
timation of the dispersion curves of the equation of motion.
Chardon [5] used the same principle but in a different sense.
He decomposed the measured wavefield into a sum of plane
waves all satisfying the equation on motion in question. This
sum of the plane waves serves as a ”pseudo-general” solution
of the McDaniel method for 1D structures:

ugen(x j, y j) =
N∑

n=1

Nroots∑
m=1

αnmexp(ikm(x jcosθn + y jsinθn)) (9)

where N is the number of plane waves directions forming
the basis and Nroots is the number of roots of the dispersion
equation associated to the Eq.(8). Chardon considered only
propagating waves (km > 0) and placed his investigation far
from the boundaries to avoid the presence of the evanescent
waves. Indeed, it was proven by Colton [6] that the sinu-
soidal plane waves form dense space of the general solution
of the Helmholtz equation of the 2nd order. A similar proof
for 4th order equation like the Kirchhoff plate was not found
to the author’s knowledge. None the less, we use the mod-
ified method of Chardon and we use all the roots {km} to be
closer to the general solution.

The inverse technique is the same as in the preceeding
McDaniel case with projectors Pgen and Qgen. The matrix Ψ
is defined as follows

Ψ j,[m,n] = [exp(ikm(x jcosθn + y jsinθn))]4m,n=1 (10)

The complexity of using this method in 2D is the choice
of the number of plane waves directions. The number should
not be too low, so that the general solution is not too re-
strained and it should not be too high either in order not to
overfit the measured data. In our case we made use of the
BIC criterion described below to do the optimal choise of the
plane waves number. The advantage of using the BIC cri-
terion is omitting of the human factor in the choice of the
size of the (pseudo-) general solution. We would naturally
include as many plane wave as possible to get closer to the
general solution. But after applying the BIC criterion we can
see that there is a optimal number of waves which describes
sufficiently well the vibration field without adding to much
free parameters.

The presented method can be used to any equation of mo-
tion describing the plate with the only one equation like the
Kirchhoff plate, Mindlin plate, Kirchhoff orthotropic plate,
membrane (Helmhotz equation).

4 BIC criterion

Bayesian information criterion (BIC) is a statistical tool
which predicts the best choice of models from a given finite
set of models. It can be used for any problem of optimiza-
tion where there exists an objective likelihood function. The
criterion searches for the maximum of the likehood function
over the considered models but penalizes the models with
more free parameters. This is important because in vibra-
tion problems we can always have more complicated models
which give better fit to the measured data but the price to pay
is the complexity of the model and high possibility of unsta-
ble determination of these parameters. If we consider that
our inverse problem (either McDaniel or IWC) has a residual
vector which is normally distributed then we can write the
BIC function for a model m as follows (for example [7])

BICm = nln

⎛⎜⎜⎜⎜⎝
∑

r2
i

n

⎞⎟⎟⎟⎟⎠ + Kmlogn (11)

where n is the number of measured independent data, r
is the residual defined by Eq.(7), Km is the number of model
parameters. The absolute value of BIC does not have im-
portance, what counts are the differences of BIC for different
models in question. If we define the difference

Δm = BICm −min(BIC) (12)

then we can determine the posterior probabilities that a
given model m is the closest to given measured data ([7])

pm =
exp(−Δm/2)∑
j exp(−Δ j/2)

(13)

5 Experimental identification of opti-
mal 1D model

The method of model selection was first applied to the
determination of suitable model for a thin aluminium beam.
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The beam was submitted to four levels of static axial forces
(0, 500, 1000 and 2000N). Beam length was 400mm, its
width 20mm and its thickness 2mm. It was transversely driven
by a shaker with pseudo-randomexcitation bandwidth 0-10kHz.
The steady-state response was measured at 43 points by scan-
ning laser vibrometer. The prestress axial force could be
measured independently by static tensile meter which used
the mechanical deformation of the rigid support of the beam.

Figure 2: BIC posterior probabilitis of different models
considered in McDaniel inverse problem for a aluminium

beam under axial tension. Some probabilities are negligible,
so we cannot see anything.

All the models considered in this analysis shown in Fig-
ure 2 can be summarized in linear differential equation of the
form:

A0u(x) + A2
d2u(x)
dx2

+ A4
d4u(x)
dx4

= 0 (14)

The coefficients Ai depend of chosen model. Their overview
is in the Table 1. From the analysis of the posterior proba-
bilities shown in Figure 2 we can see that the Euler-Bernoulli
model with axial force is preferred once the axial force reaches
significant level of 500N. Interesting phenomenon is the near
equality of the Euler-Bernoulli and Timoshenkomodels. This
is not surprising because the beam is sufficiently thin. Re-
sults showing the determination of the Euler-Bernoulli model
with axial force are shown at Figure 3. We can see a good
agreement between the results obtained by McDaniel inverse
method (dynamic)and the static methods (3-point bending
for example).

Figure 3: Results showing the optimized values for the
Euler-Bernoulli beam with tensile force.

Model Name Parameters
A1 String A0 = ρLω

2

A2=T
A2 Euler-Bernouilli A0-ρLω

2

A4=EI

A3 Timoshenko A0=-ρLω
2+
ρ2Lω

4I
kA2G

A2=ω
2ρL

I
A (1+ E

kG )
A4=EI

A4 Euler + Force A0=-ρLω
2

A2=-T
A4 ==EI

G1 String-like A0=ρLω
2

A2= A2(ω)
G2 Beam-like A0=-ρLω

2

A4= A4(ω)

Table 1: Different string/beam models. Models designed A
are analytical with parameters constant upon frequency.

Models designed G are pseudo-general, their parameters can
change with frequency. Parameters: T-tensile force in the
string, E-Young’s modulus, G-Shear modulus, I-section

moment, ρL- linear density, ω - angular frequency, A section
of the beam, k=5/6 for rectangular section.

6 Experimental identification of opti-
mal 2D model

As an example of a rather complicated 2D structure we
studied the backboard of the acoustic guitar model Stagg
536. It is made of 4mm thick spruce wood and it is stiff-
ened by three parallel wooden stiffeners on the inner side of
the guitar (Figure 4). So the plate is essentially anisotropic
and not homogenous in space. Two regions were studied:
the zone A which represents the entire backboard was stud-
ied at low frequencies around 500Hz and the zone B which
is situated between the two adjacent stiffeners represents ho-
mogenous wood was studied at higher frequencies aroung
1500Hz. Modified IWC method was used to identify the
coefficients of the isotropic and orthotropic Kirchhoff plate
equations from the vibration fields measured in the zone A
and B.

The orthotropic Kirchhoff plate equation has the form

−ρSω
2u + D1

∂4u
∂x4
+ D3

∂4u
∂y4
+ (D2 + D4)

∂4u
∂x2∂y2

= 0 (15)

where ρS is the surface density and coefficients Di de-
scribe the bending stiffness of the plate. If the plate is isotropic
then D1 = D3 = D and D2 + D4 = 2D.

We identified the two models (isotropic and orthotropic)
from the vibration fields using the modified IWC method.
On Figure 5 we can see the posterior probabilities deter-
mined for two considered models Kirchhoff isotropic and
ortotropic plate. The analysis run on the data at lower fre-
quencies (500 - 1000 Hz) used whole zone A (stiffeners were
neglected). On the other hand at higher frequencies (1-2kHz)
the same analysis was performed on restrained zone B (ho-
mogenous anisotropic wood without stiffeners). From the
Figure 5 we can say that at the lower frequencies isotropic
Kirchhoffmodel is better while at the higher frequencies it is
the orthotropic model which is more adapted.
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Figure 4: Vibration shapes at 500 and 1700Hz of the
backboard of the acoustic guitar. Zone A contains the entire
backboard wile the zone B lies between the two adjacent

stiffeners.

Figure 5: Posterior probabilities determined by the BIC of
the two considered models describing the guitar backboard.

As the mass of the plate is unknown we cannot determine
coefficients Di directly but we can determine the velocities
of the propagating plane waves in dependence of angle of
propagation. Let’s consider a plane wave propagating in the
direction n=(nx, ny) and wave vector k=kn

u = exp(i(ωt − kx)) (16)

Then inserting Eq.(16) into Eq.(15) we get the dispersion
equation for k and determine the phase velocity c(nx, ny, ω).
It is usefult to consider the phase velocity divided by square
root of ω because this variable is independent of frequency

c√
ω
=

√
ω

k
=

4

√
D1n4

x + (D2 + D4)n2
xn2

y + D3n4
y

ρS
(17)

On Figure 6 we can clearly see the anisotropic nature of
the wood measured at the zone B. This is not surprising be-
cause zone B is uniquely composed of wood without stiff-
eners. The surprising result of this analysis is that the gui-
tar backplate is behaving as isotropic at low frequencies. In
other words we can say that the anisotropic effect of wood is
compensated by added stiffeners.

Figure 6: Normalized phase velocities as results of the
inverse problem defined by Eq.(17).

7 Conclusion

In this article we showed the applicability of the BIC cri-
terion used within the McDaniel and IWC inverse methods.
This criterion enables us to choose which model is the most
appropriate to describe the vibration problem. The method
was applied to the determination of the equation of motion
of the aluminium beam under axial tension and to the deter-
mination of equation of motion of an acoustic guitar back-
board. Interestingly, we observed that this backboard stiff-
ened by three stiffeners behaves almost like an isotropic plate
at low frequencies, while at high frequencies we see clearly
the anisotropic nature of wooden plate.
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