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This article addresses the problem of 2D location of acoustics source in a plate. This location is based on Time

Difference of Arrival (TDOA) measurements thanks to an array of three sensors arbitrary distributed on the 2D

plane. In order to obtain a fast, but robust and accuracy, algorithm, allowing an online estimation of the location

of hits or Acoustic Emission events in a composite plate for example, the authors propose an exact solution of the

TDOA problem by solving a nonlinear system of coupled equations. The exact analytical Cramer-Rao Bounds

(CRBs) on the variance of the estimations is then presented. Moreover, the statistical performances of the method

are illustrated by means of Monte-Carlo simulations and are compared to the CRBs.

1 Introduction
The monitoring of Acoustic Emission events in compo-

site material needs not only the identification of the nature

and the instant of occurrence of the events but the location

of the acoustic source. A previous work proposed a method,

based on a short-time crosscorrelation function, which can

be used for online Acoustic Emission source location in a

composite plate [1]. This method allows to estimate the time

delay in the early coherent part of the signals, which is espe-

cially suitable in a very dispersive medium such as composite

material. These estimated time delay can be used with 3 dis-

tributed sensors in a two-dimensional plate for sound source

location. Some previous works proposed approximated solu-

tions or maximum likelihood methods [2, 3, 4]. In this paper,

the authors present the exact solution of the Time Difference

Of Arrival (TDOA) problem which can be used for Acoustic

Emission source location in a simple way. Moreover, in order

to estimate the a priori accuracy of the technic and the effect

of the individual arrival times errors, the exact Cramer-Rao

Bound for the estimated source position, are proposed. These

last expressions can be very useful in order to justify the ac-

curacy of TDOA measurements and for guiding the choice

of the sensors position.

2 Theoretical analysis

2.1 Location calculation
The basic principle for the location calculation is the time-

distance relationship implied by the velocity of the acoustic

wave. The arrival time t on an acoustic event combine with

the sound velocity c, leads to the distance d from the acoustic

source to the sensor:

d = c · t. (1)

Then, each arrival time difference between two sensors im-

plies a difference in distance and leads to the distance equa-

tion

dkl =

√
(x − xk)2 + (y − yk)2 −

√
(x − xl)2 + (y − yl)2, (2)

where (x, y), (xk, yk), and (xl, yl) are the unknown coordinates

of the source and the coordinates, supposed to be known, of

the sensors k and l respectively (k = 1, 2, 3, l = 1, 2, 3).

By considering sensor 1 as the reference sensor, it may

be possible to consider two distance equations. The solution,

which corresponds to the intersection of two hyperbolas as

shown in Fig. 1(a), can be solved and leads to the next algo-

rithm:

1. Recording of the 3 sensors location, x1, y1, x2, y2, x3, y3;

2. Distance calculation from time delay measurements:

d21 = c · t21 (3)

and

d31 = c · t31 (4)

where t21 = t2 − t1 and t31 = t3 − t1 are the arrival time

difference between sensors 2 and 1 and sensors 3 and

1 respectively;

3. Calculation of the coefficients

α21 =
−d2

21 − x2
1 + x2

2 − y2
1 + y2

2

2
(5)

and

α31 =
−d2

31 − x2
1 + x2

3 − y2
1 + y2

3

2
; (6)

4. Calculation of the parameters

a = − (x1 − x2)d31 − (x1 − x3)d21

(y1 − y2)d31 − (y1 − y3)d21

(7)

and

b = − α21d31 − α31d21

(y1 − y2)d31 − (y1 − y3)d21

; (8)

5. Calculation of the coefficients

A = [(x1 − x2) + a(y1 − y2)]2 − d2
21(1 + a2), (9)

B = 2{[α21 + b(y1 − y2)][(x1 − x2) + a(y1 − y2)]

−d2
21[a(b − y1) − x1]}, (10)

and

C = [α21 + b(y1 − y2)]2 − d2
21[x2

1 + (b − y1)2]; (11)

6. Calculation of the coordinates:

x =
−B ± √B2 − 4AC

2A
(12)

and

y = ax + b. (13)

2.2 Cramer-Rao Bounds
In this work, the authors propose the exact analytic forms

of the CRBs. These bounds, expressed as functions of the

sensors location and the variance σ2 of the time delay esti-

mation τ, indicate the lower limits of the estimation variance

for the unknown coordinates x and y of the acoustic source.
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2.2.1 Probality density function of the measurement sig-
nal

Let the observed data be

τ21 = t21 + b21 (14)

and

τ31 = t31 + b31 (15)

where the observation noises, b21 and b31 are white additive

Gaussian processes. Then, the probability density functions

of the observations are given by

p(τm1; θθ) =
1√

2πσ2
exp

[
− 1

2σ2
(τm1 − tm1)2

]
(16)

with m = 1, 2 and θθ = [x, y]T the unknown coordinates of the

source. Since τ21 and τ31 are non-correlated, then

p(τ; θθ) = p(τ21; θθ) × p(τ31; θθ)

=
1√

2πσ2
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
[
(τ21 − t21)2 + (τ31 − t31)2

]
2σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

with τ = [τ21, τ31]T .

The log-likelihood function is then given by

∧(τ; θθ) = ln
[
p(τ; θθ)

]

= −N ln(2πσ2) −
[
(τ21 − t21)2 + (τ31 − t31)2

]
2σ2

(18)

2.2.2 Fisher Information Matrix

The CRB is the inverse of the Fisher Information Matrice

(FIM) [5] whose elements are

[I(θθ)]i j = −E
[
∂2 ∧ (τ; θθ)

∂θi∂θ j

]
(19)

with i = 1, 2 and j = 1, 2. Thus, in order to evaluate the FIM,

derivatives of ∧(τ; θθ) need to be computed. It can be shown

that the derivative of ∧(τ; θθ) with respect to θi is given by

∂ ∧ (τ; θθ)

∂θi
= − 1

2σ2

∂

∂θi

[
(τ21 − t21)2 + (τ31 − t31)2

]
(20)

However

∂

∂θi

[
(τ21 − t21)2

]
= −2(τ21 − t21)

∂t21

∂θi
(21)

and
∂

∂θi

[
(τ31 − t31)2

]
= −2(τ31 − t31)

∂t31

∂θi
. (22)

Moreover

t21 =
d21

c
=

l2 − l1
c

(23)

and

t31 =
d31

c
=

l3 − l1
c

(24)

with

l1 =
√

(x − x1)2 + (y − y1)2 (25)

l2 =
√

(x − x2)2 + (y − y2)2 (26)

and

l3 =
√

(x − x3)2 + (y − y3)2. (27)

Then
∂tm1

∂θi
=

1

c

(
∂lm
∂θi
− ∂l1
∂θi

)
(28)

with
∂lm
∂θi
=
θi − θim

lm
. (29)

and

m = 2, 3.

Hence

∂ ∧ (τ; θθ)

∂θi
=

1

cσ2
(τ21 − t21)

(
θi − θi2

l2
− θi − θi1

l1

)

+
1

cσ2
(τ31 − t31)

(
θi − θi3

l3
− θi − θi1

l1

)
(30)

The second order derivatives of ∧(τ; θθ) are then given by

∂

∂θ j

[
∂ ∧ (τ; θθ)

∂θi

]

=
1

cσ2

{
−1

c

(
θ j − θ j2

l2
− θ j − θ j1

l1

) (
θi − θi2

l2
− θi − θi1

l1

)

− 1

c

(
θ j − θ j3

l3
− θ j − θ j1

l1

) (
θi − θi3

l3
− θi − θi1

l1

)

+ (τ21 − τ21)

⎡⎢⎢⎢⎢⎣ (θi − θi2 )(θ j − θ j2 )

l3
2

− (θi − θi1 )(θ j − θ j1 )

l3
1

⎤⎥⎥⎥⎥⎦

+ (τ31 − τ31)

⎡⎢⎢⎢⎢⎣ (θi − θi3 )(θ j − θ j3 )

l3
3

− (θi − θi1 )(θ j − θ j1 )

l3
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

(31)

with i � j. When i = j

∂

∂θ j

[
∂ ∧ (τ; θθ)

∂θi

]

=
1

cσ2

⎧⎪⎪⎨⎪⎪⎩−
1

c

(
θ j − θ j2

l2
− θ j − θ j1

l1

)2

−1

c

(
θ j − θ j3

l3
− θ j − θ j1

l1

)2

+ (τ21 − τ21)

⎡⎢⎢⎢⎢⎣ (θi − θi2 )2

l3
2

− (θi − θi1 )2

l3
1

+
1

l2
− 1

l1

⎤⎥⎥⎥⎥⎦

+ (τ31 − τ31)

⎡⎢⎢⎢⎢⎣ (θi − θi3 )2

l3
3

− (θi − θi1 )2

l3
1

+
1

l3
− 1

l1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
(32)

By noting that

Kj2 =

(
θ j − θ j2

l2
− θ j − θ j1

l1

)
(33)

and

Kj3 =

(
θ j − θ j3

l3
− θ j − θ j1

l1

)
(34)
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it can be shown that the expected values are

−E
[
∂2 ∧ (τ; θθ)

∂θi∂θ j

]
=

1

c2σ2

(
Kj2 · Ki2 + Kj3 · Ki3

)
(i � j)

(35)

and

−E
⎡⎢⎢⎢⎢⎣∂2 ∧ (τ; θθ)

∂θ2i

⎤⎥⎥⎥⎥⎦ = 1

c2σ2

(
K2

i2 + K2
i3

)
(i = j). (36)

The FIM is then given by

I(θθ) =
1

c2σ2

[
K2

12 + K2
13 K22 · K12 + K23 · K13

K12 · K22 + K13 · K23 K2
22 + K2

23

]

(37)

2.2.3 Cramer Rao Bound

Inverting this matrix gives the CRB for the parameters.

Then, the CRB for θ1 = x and θ2 = y are

CRB(θ1) = CRB(x) = c2σ2 × K2
22 + K2

23

(K12K23 − K13K22)2
, (38)

and

CRB(θ2) = CRB(y) = c2σ2 × K2
12 + K2

13

(K12K23 − K13K22)2
(39)

with

K12 =
x − x2

l2
− x − x1

l1
, (40)

K13 =
x − x3

l3
− x − x1

l1
, (41)

K22 =
y − y2

l2
− y − y1

l1
, (42)

and

K23 =
y − y3

l3
− y − y1

l1
. (43)

In these expressions,

lk =
√

(x − xk)2 + (y − yk)2 (k = 1, 2, 3) (44)

represents the Euclidean distance between the source loca-

tion and sensor k.

3 Results and conclusions
At last, the statistical behavior of the location procedure

is performed. Arbitrary units (a.u.) has been chosen to de-

scribe each physical quantities. The parameters of the prob-

lem are c = 1, (x1, y1) = (5, 8.5) (reference sensor), (x2, y2) =

(1, 1.5) and (x3, y3) = (9, 1.5). 1000 Monte Carlo trials were

run on simulated data and for an arbitrary position of the

three sensors as described by figure 1(a). The black area,

shown in figure 1(b), indicates the valid zone of measure-

ment, i.e. the area where no error was encountered during

the simulation (the hyperbolas always intersect each other).

Then, the performances of the localization procedure is

compared the theorical CRB (Équations 38 and 39). Figure

2 shows that the variance of the position estimation, obtained

with a noise variance of the time delay given by var(τ) =
0.05, is very close to the CRB in the valid area. In order
to assess the performance of the estimator for different error

level, 1000 source localization estimations, using different

noise realizations lying between 0.001 and 8.192, has been

performed for a same coordinate pair (x, y) = (4.5, 4.5). The

results (figure 3) show that the performance of the algorithm

still follows the theorical variance when the time error is low

enough (var(τ) � 1). This study provides a simple way to

determine the optimal position of a sensor array for a given

a-priori accuracy. Now, an experimental set-up is going to be

developed for an experimental assessment of the method.

References
[1] A. Le Duff, S.E. Hamdi, G. Plantier, and B. Lascoup,

”Time Delay Estimation for Acoustic Source Location

by Means of Short-Time Cross-Correlation”, IEEE In-
ternational Conference on Sensors, Limerick, Ireland,

october 2011.

[2] B. Woodacre, ”TDOA Positioning and TOA-based

Calibration for Precision Location”, Master’s thesis,

Worcester Polytechnic Institute, (2004).

[3] T. Ajdler, I. Kozintsev, R. Lienhart, M. Vetterli,

”Acoustic Source Localization in Distributed Sensor

Networks”, Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, 2, 1328-1332,

(2004).

[4] M.L. Fowler and Xi Hu, ”Signal Models for

TDOA/FDOA Estimation”, IEEE Transactions on
Aerospace and Electronic Systems, 44, 1543-1550,

(2008).

[5] S.M. Kay, ”Modern Spectral Estimation - Theory &

Application”, Prentice-Hall, (1988).

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

426



0 5 10

0

2

4

6

8

10

x (a.u.)

y 
(a

.u
.)

(a)

x (a.u.)

y 
(a

.u
.)

(b)

0 5 10

0

2

4

6

8

10

Figure 1: Location of the 3 sensors (ref. sensor at the top of the plate) (a) - Valid zone of measurement (black) (b).
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Figure 2: var(x) (upper left) - var(y) (upper right) - CRB(x) (down left) - CRB(y) (down right) .

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

427



10
−2

10
0

10
−4

10
−2

10
0

10
2

10
4

noise variance (s2)

va
r(

x)

(a)

10
−2

10
0

10
−4

10
−2

10
0

10
2

10
4

noise variance (s2)

va
r(

y)
(b)

Figure 3: CRB(x) (a) and CRB(y) (b) versus variance of noise for the coordinate pair (x, y) = (4.5, 4.5).
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