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Numerical simulations of a loaded standing-wave thermoacoustic engine are performed using a low Mach number

model. This work uses a simplified model based on coupling the nonlinear flow and heat exchange in the heat

exchangers and the stack with a linear acoustic model of the resonator and load. The two-dimensional unsteady

numerical solution in the heat exchangers and stack region shows the amplification process until saturation is

obtained. The influence of the load model on the wave saturation is studied, yielding a specific load range for

saturation at levels comparable with experiments. In order to investigate the energy conversion within the standing-

wave thermoacoustic engine, the acoustic power developed is calculated and the efficiency is estimated.

1 Introduction
A thermoacoustic engine is a device absorbing heat at the

hot heat exchanger and releasing heat at the cold heat ex-

changer while producing acoustic work as an output. Such

a device always requires adequate coupling with the load in

order to achieve proper functionning.

A simplified model of a linear thermoacoustic engine con-

sists of a stack of horizontal plates placed between two heat

exchangers in a long tube ending at a dead end on one side

and loaded on the other side. If the heat exchangers main-

tain a sufficiently large temperature gradient across the stack,

work is produced through the combination of pressure fluc-

tuation and oscillating heat exchange in the boundary layers

along the plates [1, 2, 3]. There are few existing numerical

simulations of such engines [4, 5].

In the present study, the engine is split into two differ-

ent regions, the resonators and the active cell, comprising

the heat exchangers and stack. The flow in the resonators

is described by a standard linear one-dimensional acoustic

model, and the active cell is investigated numerically using a

two-dimensional Low Mach number model. An asymptotic

analysis is used to couple the two regions. Details on this

analysis can be found in [6, 7].

Numerical simulations using this approach show that de-

pending on the load description and value, the engine can or

cannot start. Also, the range of load values leading to satura-

tion at pressure and velocity levels comparable with experi-

ments is very narrow. An analytical approach considering the

active cell as a source of volume inside a one dimensional lin-

ear acoustic wave guide shows the range of load values that

should yield amplification of a given acoustic mode, and/or

saturation at maximum acoustic power output. Simulations

showed that for the load values corresponding to saturation

at maximum power, the engine does not start. A numerical

approach is then used to find the appropriate load values.

After a brief review of the model, the influence of the

load model on the periodic operation of the engine will be

discussed, using an analytical approach and a numerical ap-

proach. The simulation results will then be presented and dis-

cussed, showing for a given configuration, the specific load

range for saturation at levels comparable with experiments.

Finally, estimates of the acoustic power developed and of the

engine efficiency will be shown and discussed.

2 Numerical model description
The geometry consists of a long tube with length Lres,

within which an active cell with characteristic (stack) length

Lstack is placed at a distance LL from the left end. The active

cell consists of a stack of horizontal plates placed between

two heat exchangers also made of horizontal plates, having

the same periodicity so that the simulation can be reduced to

a domain consisting of two half-plates plus the gap between

them, and a consistent fraction of the resonator cross-section.

The geometry of the entire resonator and of the active cell are

shown in Figure 1, as well as the corresponding dimension-

less coordinate systems x̂ and (x, y), using reference length

Lres in the resonator and Lstack in the active cell. One res-

onator end, located at x̂ = −lL is closed, while the second

consists of a load reduced to an impedance at a fixed location

x̂ = lR.

Figure 1: Geometry of linear acoustic system (top) and of

active cell geometry (bottom).

The low Mach number model is obtained with a pertur-

bation asymptotic method, described in detail in [6, 7]. The

key scaling assumptions made is that at the stationary regime,

velocities are small compared with the speed of sound, and

that they span a length of the order of the length of the stack.

Then since for an acoustic resonance, the resonator length is

of the order of the speed of sound times the period, while the

stack length is of the order of the velocity times the period,

the ratio between the stack length Lstack and the resonator

length Lres equals the reference Mach number M. Assuming

a time scale of the order of the period, flow in the resonator

is characterized by a linear acoustic problem. Flow in the ac-

tive cell is described by a dynamically incompressible model,

with order M2 pressure gradients superimposed to spatially

uniform pressure. In the solid stack plates the heat conduc-

tion equation is used.

At the solid boundaries, continuity of temperature and

heat flux and no slip condition are imposed. Temperature

is fixed in the heat exchangers, T = Tc on the cooler plates,

T = Th on the heater plates. The boundaries of the active cell

are considered adiabatic.

Without loss of generality, acoustics in the two parts of

the resonator can be expressed as a pair of plane traveling

waves that move respectively left and right at the speed of

sound. At tube ends, the boundary conditions result in a re-

lationship that determines the outgoing wave as a function

of the incoming wave. In the current context, this model re-

duces resonator acoustics to boundary conditions, on both

sides of the active cell, relating order M pressure and veloc-

ity to their values at a previous time equal to the round trip

time between the active cell location and the respective end
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at the respective speed of sound.

Matching these two solutions in the standard way pro-

vides appropriate boundary conditions to the flow inside the

active cell, depending of the impedance value at the load end.

From the standpoint of resonator acoustics, the active cell is

transparent to pressure but provides a source of volume.

The problem in the active cell is solved numerically us-

ing a finite volume code developed at LIMSI [6]. Diffusion is

dealt with implicitly while advection is explicit. Schemes are

second-order accurate in space and time. A fractional time

step projection method adapted for variable density is used

to enforce continuity. Both the ADI and GMRES algorithms

have been tested to solve the Helmholtz equation for temper-

ature and velocities. A multigrid algorithm determines the

pressure correction. Solution of the coupled equations pro-

viding velocity boundary conditions from resonator acous-

tic are appropriately integrated in the solution sequence. An

extensive validation of the current implementation was per-

formed with satisfactory results [8]. Initial conditions con-

sidered fluid at rest and temperature profiles obtained numer-

ically, corresponding to steady conduction in the walls and

in fluid at rest. Simulations are performed for a fixed load.

The load influence on the periodic operation of the engine

is analyzed by varying the impedance value representing the

load.

3 Analytical approach
In this section an analytical approach is developed to es-

timate the range of load values that should yield amplifica-

tion of a given acoustic mode, and/or saturation at maximum

acoustic power output. The resonator is considered to be a

one dimensional linear acoustic wave guide, with single and

unknown angular frequency ω. In accordance with the pre-

vious section, the active thermoacoustic cell is considered

to act as a point source of volume associated to an imposed

discontinuity in temperature, the acoustic pressure remaining

unchanged between the entrance and exit of the active cell.

As shown in Figure 1 (top), the tube extends from x̂ = −lL

to x̂ = lR. The horizontal velocity u and the acoustic pressure

p′, solutions of the dimensionless linear acoustic equations

can then be written on each side of the active cell in complex

forms.

On the left (hot) side of the active cell, the dimensionless

speed of sound is aL =
√

Th. The left end being closed,

the corresponding boundary condition is u(x̂ = −lL) = 0.

The wave is a standing wave, with π/2 temporal phase shift

between u and p′. The velocity amplitude on this left side of

the active cell is called U.

The active cell, modeled as a point source in this descrip-

tion, is located at x̂ = 0, and the thermoacoustic effect is

assumed to create a source of volume, which, unlike in the

previous section, is not solved for explicitly. If u+ = u(0−)

and u− = u(0+) denote the horizontal velocities at the left

and right of the active cell respectively, then u+ = u−+Δu, in

which Δu results from the thermoacoustic effect. It is charac-

terized by a complex amplitude V , which can be defined such

that if for example V is real, Δu is in phase with pressure.

The speed of sound on the right of the active cell is aR =√
Tc. The horizontal velocity u and the acoustic pressure p′

can also be written on that side of the active cell in complex

forms. At the right end, x̂ = lR, there is a load characterized

by the relationship p′ = f u, with f complex. If f is assumed

to be real, a purely dissipative load is considered.

Calling the temperature ratio α = a2
L/a

2
R = Th/Tc, the

dispersion relation can be obtained is the following form:

−1 +
√
α tan

ωlL

aL
tan
ωlR
aR
+

iV
U
√
α tan

ωlR
aR

=
f aR

γ

(
i
√
α tan

ωlL

aL
− V

U
√
α + i tan

ωlR
aR

)
(1)

This dispersion relation is complex. If ω is a complex

number, with non zero imaginary part, then there is a nonzero

growth rate. If the imaginary part of ω is negative, then the

mode will be amplified. Otherwise, it will decay in time.

In the following, the specific situation of steady state (sat-

uration) is discussed. Therefore focus is on ω real.

The complex velocity amplitude V of Δu can be rewritten

as V = U(v + iw), with only v contributing to work. In the

case ofω real, assuming f is real, and introducing the symbol

φ = f aR/γ, the dispersion relation (1) can be rewritten and

separated into real and imaginary equations:

−1 +
√
α tan

ωlL

aL
tan
ωlR
aR
− w
√
α tan

ωlR
aR
= −vφ

√
α (2)

v
√
α tan

ωlR
aR
= φ
√
α tan

ωlL

aL
− wφ

√
α + φ tan

ωlR
aR

(3)

These two equations can be combined to eliminate w. If a

new notation is introduced, K = tan2 ωlR/aR, one obtains

that:

v =
φ(1 + K)√
α(K + φ2)

(4)

It can be shown that v is a monotonically increasing func-

tion of K for φ > 1, and decreasing otherwise. At fixed K,

however, v can be shown to be maximum when φ = tan ωlR
aR

,

with value vmax = (1 + φ2)/(2
√
αφ) which is minimum when

φ = 1. If K (or ω) is known, one can then predict the value

of φ (and that of load f ) leading to the maximum value of

v and to maximum acoustic power. This method gives an

estimate of the load value f that would lead to maximum

efficiency. However, the numerical solution being unsteady,

the value of the angular frequency is unknown. Also, there is

no reason why the solution should only be a single-frequency

solution. Therefore, the unsteady numerical solution will be

used to estimate which is the most unstable mode and the

corresponding value of ω, before using the simple analytical

approach just described.

4 Results and discussions
Numerical simulations were carried out for two cases of

existing experimental academic thermoacoustic engines [6,

9], with a ”short” thermoacoustic active cell inserted in a

long resonator tube closed at both ends. Both of these ex-

perimental engines can be modeled using the simplified de-

vice introduced in Figure 1, by assuming lossless acoustics in

the resonators and concentrating all dissipation at the loaded

end.

In both cases the working fluid is helium, and the cold

temperature (reference temperature) is 293K. Both experi-

mental configurations differ on their dimensions (resonator

length, stack length, distance between the left end and the
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active cell, plate spacing H) and on the conditions of the ex-

periments (mean pressure, temperature difference) as sum-

marized in Table 1.

Table 1: Geometry and conditions of experimental devices

Case Lres Lstack LL H p0 ΔT

(m) (cm) (m) (mm) (bar) (K)

1 7.57 15 0.68 0.97 10 59

2 1.11 3.5 0.14 1.06 4.4 262

The numerical simulations were carried out using a reg-

ular two-dimensional mesh of the active cell (2048 × 32 grid

points). Numerical studies were conducted on the one hand

for the description of the initial amplification [6, 8], and on

the other hand for the description of the transition from rest

to periodic saturated operation. In the latter, the value of the

load had to the adjusted. Simulation of an entire transition

could be extremely long. The time step was adjusted in order

to satisfy the stability conditions, so that there were 200 (be-

ginning of simulation) to 2000 (end of simulation) time steps

per acoustic reference period.

4.1 Analysis of the coupling between the en-
gine and the load

In this section, the coupling between the load and the en-

gine is analyzed in detail. Focus is on determining the pos-

sible values f of the load leading to saturation and periodic

operation of the engine. One natural strategy is to simulate

the transition from rest for several values of the load. For

very high values of f , the initial amplification is very fast

and amplitudes of acoustic pressure and velocities grow very

quickly beyond realistic values. As the load value is low-

ered, the amplification takes longer to grow. For a certain

value of f (depending on the case), the trend switches direc-

tion and as load is lowered further, the amplification takes

place earlier. This is consistent with the existence of a value

of the load that maximizes the power developed by the en-

gine. Indeed, power becomes zero for both an infinite and

a zero impedance, hence existence of a maximum for an in-

termediate value. It is clear that the power absorbed by the

load reduces the power available for amplitude growth. For

very low impedance, it can be shown that the frequency dou-

bles. This is consistent with a zero impedance representing

an open end, which leads to resonant modes with a frequency

double than that for a closed end in straight tubes with uni-

form temperature.

By trial and error, a value of f leading to periodic op-

eration can be found for the experimental case 1, equal to

f = 90, the corresponding amplification of the acoustic pres-

sure at the active cell location being shown in Figure 2. The

entire simulation takes about 100 hours CPU time on a NEC

SX8, mostly due to the last 10% of simulation, when ampli-

tudes are high. This procedure is not efficient, and therefore

other methods are experimented, described below.

According to the previous section, for a given acoustic

mode corresponding to the angular frequencyω, it is possible

to correlate the value of the load f and the value of v, char-
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Figure 2: (top): acoustic pressure p′(t), case 1, f = 90, with

initial conduction temperature distribution and initial

random noise.

(bottom): detail at the end of simulation of acoustic pressure

p′(t), left velocity u−, right velocity u+.

acterizing the thermoacoustic effect as expressed in Eq. (4).

At the end of the simulation of Figure 2 (top), a detail of

the time signal shows (bottom of Figure 2) that the dimen-

sionless period is close to 7.5ms, meaning that the operating

mode is close to the first harmonic (the acoustic reference

period, based on the empty tube filled with helium at cold

temperature being 15ms).

Therefore, v as a function of f was plotted (Figure 3)

from Eq. (4) with the properties of the experimental case 1

and ω = 2π. It shows that v is maximum for f ≈ 1.015.

If this value of f is imposed, the simulation shows that the

engine does not start. The initially imposed small amplifica-

tion dies out. As discussed in the previous section, Eq. (4)

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

v

f

Figure 3: v as a function of f , case 1, with w ≈ 2π (first

harmonic mode), lR ≈ 0.91, aR = 1 and α = 1.2.

corresponds to the specific case of ω real, or steady opera-

tion. The study of cases where ω is complex, necessary for

the amplification phase, should lead to a better estimate of f ,

and will be the object of future work.

Another numerical approach is also experimented, based

on varying the value of the load f during the unsteady simu-

lation. The initial value of f is chosen so that there is a clear

instability and the wave is amplified. Then the value of f is

lowered until a saturation is obtained, the simulation with a

given value of f being discontinued as soon as the levels of

amplification become to large. In this approach, the simula-
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tion time has no physical meaning, but a value of f leading to

saturation at levels (of acoustic pressure and velocities) com-

parable with experiments can be obtained in a much faster

way (total CPU time of about 10 hours). One example of this

approach is plotted on Figure 4 for the experimental case 2.

Figure 4: Acoustic pressure p′(t), case 2, f = 65 (red), eight

values of f = 60, 55, 50, 45, 40, 39, 38 (green), f = 37.5
(blue), with initial temperature linear between heat

exchangers and initial random noise.

The numerical simulations for case 2 have shown that it

is the fundamental mode (corresponding to an angular fre-

quency ω ≈ π) that is most unstable. The analytical approach

analogous to the one previously described for case 1 showed

that the maximum value of v corresponds to f ≈ 0.8, for

which again the engine does not start. The value found nu-

merically for f is f ≈ 37.5, which is much larger than the

estimated ”optimum” value. For this value of f , the analyt-

ical approach predicts a value of v = 0.05 which is much

smaller than the optimum value of 0.9.

Having obtained one value of f leading to saturation at

levels comparable with experiments, it is then interesting to

assess the range of values of f leading to other saturation lev-

els. In order to do this, the value of f was manually changed

in the numerical simulations, starting from a saturated sit-

uation. For example in case 1, results were obtained from

changing the value of the load from 90 to 80, from 90 to 85,

and from 90 to 89. The transition from one value of f to

the next takes a hundred of periods to stabilize. The choices

f = 89 and f = 85 lead to new saturated situations, but the

choice f = 80 leads to a wave decaying to zero. The range

of values of f leading to observable periodic saturated oper-

ation is therefore narrow around f = 90.

Another possible approach, which has not been tested yet,

would be to impose the analytical ”optimum” value f , and

impose a greater temperature difference between the heat ex-

changers in order to start the engine. Then the temperature

difference could be lowered to experimental values.

In conclusion, finding the appropriate value of the load

numerically is a CPU time consuming task, which can be

shorten with appropriate use of analytical approaches such

as that developed in Section 3. Other load models can also

be tested, for example a model allowing for a given phase

shift between acoustic pressure and velocity at the load end.

4.2 Analysis of periodic regime
Once saturation is obtained, the numerical solution can be

analyzed in several ways. The harmonic content of the wave

is one output of the unsteady simulation. The time signals

of pressure and velocity at given points can be analyzed. For

example, Figures 2 (bottom) and 5 show for cases 1 and 2 re-

spectively, the time history of acoustic pressure at the active

cell location, and of the velocities at the entrance and the exit

of the active cell (corresponding to points x̂ = 0+ and x̂ = 0−
in the resonator coordinate system). As mentioned in the

previous section, in case 1, the selected frequency for the pe-

riodic regime (Figure 2) is close to that of the first harmonic

mode, and the phase shift between pressure and velocity are

out of phase by almost π/2, which is consistent with a stand-

ing wave engine. The active cell creates small amplitude and

phase modifications on the velocity between the entrance u−
and the exit u+. Similar comments can be formulated for

the periodic regime observed in case 2 (Figure 5), but in this

case, the selected frequency for the periodic regime is close

to that of the fundamental mode of the empty resonator filled

with cold temperature gas.
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Figure 5: Detail (periodic regime) of acoustic pressure p′(t)
in case 2, left velocity u−, right velocity u+. f = 37.5, with

initial temperature linear between heat exchangers and

initial random noise.

The instantaneous acoustic field over the entire resonator

length can be reconstructed from the output file of the numer-

ical simulations that gives acoustic pressure and horizontal

velocity at the entrance and exit of the active cell at all dis-

crete times. The reconstruction is done analytically on each

side of the active cell, using the d’Alembert solution, and im-

posing the speed of sound as a function of temperature (hot

on the left resonator, and cold on the right resonator). Fig-

ure 6 shows the instantaneous acoustic pressure and horizon-

tal velocity along the resonator in case 1, at one given instant

in the saturated periodic regime. The obtained field resem-

bles the first harmonic mode of the empty tube with closed

ends, with two differences: there is a (small) discontinuity

of velocity at the active cell location, and the velocity at the

load end is very small but non zero.

Figure 7 shows the analogous reconstruction of instan-

taneous acoustic pressure and horizontal velocity along the

resonator in case 2. The obtained fields resemble the funda-

mental mode of the empty tube with closed ends.
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Figure 6: Instantaneous velocity and acoustic pressure over

the resonator length, case 1, f = 90.
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Finally, the output files can be used to estimate the acous-

tic power produced at a given section of the engine in the

periodic regime, defined by :

Pac = S × 1

τ

∫
τ

p′udt, (5)

where τ is the period of the signal and S is the section of the

resonator tube. In order to smooth out numerical errors, the

average value is calculated over five periods.

Similarly, the thermal power can be calculated using the

instantaneous two-dimensional temperature field in the ac-

tive cell, by integration over the time period of the surface

integral of heat flux on the hot heat exchanger:

Qh =
1

τ

∫
τ

∫
S h

λ
∂T
∂n

dS dt, (6)

where S h is the total heat-exchanger surface, n being the out-

ward normal vector.

Table 2: Energy balance

Case Pac (W) Qh (W) η/ηC

1 66 3828 10%

2 1.685 274 1.3%

The efficiency η = Pac/Qh can then be calculated and

compared to the Carnot efficiency ηC , and results are sum-

marized in Table 2 for both cases. The results obtained in

case 1 are in agreement with experimental measures on this

device. No experimental measure of efficiency is available

in case 2. In both cases the efficiency is low. Improvement

of the efficiency can be attempted, given the geometry and

the experimental conditions, by modifying the location of the

active cell or the load within the resonator. This will be the

object of future work.

5 Conclusion
Using a low-Mach model and combining the numerical

solution of the active cell and the analytical solution of linear

acoustics, two experimental devices of standing-wave ther-

moacoustic engines were analyzed. One aspect of this study

was the estimate of the adequate load leading to saturation

and periodic operation of the engine. Several numerical strate-

gies were tested, and showed that finding the appropriate

value of the load numerically is a CPU time consuming task,

which can be shorten with appropriate use of analytical ap-

proaches One fairly efficient approach consisted in choosing

an initial value of the load so that there was a clear insta-

bility. Then the load was lowered until saturation was ob-

tained, the simulation being discontinued and the value of the

load changed as soon as the levels of amplification became

to large. The periodic regimes were then analyzed with spe-

cial focus on the unstable modes. The instantaneous acoustic

field along the resonator was plotted. Finally the acoustic

power and engine efficiency were estimated to be very small

but comparable with experimental measurements. One of the

main challenges in the development of thermoacoustic ma-

chines remains the improvement of the efficiency.
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