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The goal of this paper is to inverse the Biot parameters of some manufactured water-saturated porous 
material (plate or cylinder). Mainly three cases of boundary conditions are investigated. First, a porous plate with 
open and sealed pore condition: the normal reflection and transmission coefficients of a given open pore plate 
are measured. They are compared with the coefficients obtained when the pores of the faces of the plate are 
sealed with thin quick setting cement. Second, the backscattering coefficient of a porous cylinder is measured. 
The calibration signal is the signal backscattered by the same cylinder wrapped in a thin Teflon® film. In that 
case, the cylinder behaves like a “soft” cylinder. Third, a porous plate with different boundary conditions on its 
faces: the normal reflected signal onto an open pore plate is recorded when the plate is completely immersed in 
water and when its upper face is in the air. These two experiments allow us to separate the fast and slow echoes 
on the signal. The last part presents a theoretical study of the Regge trajectories of the resonance families of a 
porous cylinder when its superficial pores are open or sealed.  

1 Introduction 
In the frame of Biot’s theory [1, 2], this paper deals with 

the ultrasonic behavior of some water-saturated porous 
scatterers under different pore sealing conditions of the 
superficial pores of their interfaces [3]. It points out the 
influence of the three kinds of waves (fast, slow, transverse) 
which can propagate in such mediums and estimates the 
values of some Biot parameters obtained via an inversion 
procedure. The required recording technique is first 
described and the experimental results are then discussed 
for the studied plates and cylinder. 

2 Experimental technique 
The studied porous target is immersed in a 2000 liter 

water tank. Whatever the shape of the porous target, 
cylinder or plate under different boundary conditions, the 
same experimental setup is used to insonify it normally and 
record its response.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Experimental setup.  

The distance between the broadband transducers is 
about 1 m and the distance between the emitter and the 
target is about 50 cm. Each of the scatterers is insonified 
with a normal incident pulse repeatedly launched by the 
emitter and produced by the 300 V discharge of the internal 
capacitor of the generator which also triggers the launching. 
The frequency domain investigated depends of the central 
frequency of the pair of transducers used (Panametrics®, 
non-focused, 500 kHz, 1MHz). The signals (reflected and 
transmitted signals from a plate, backscattered signals by a 
cylinder) are stored after the electronic perturbations have 
been strongly reduced thanks to an average of 200 

acquisitions. The sampling frequency is 100 MHz and the 
recorded signals have 80,000 samples. 

3 Porous plate 
The inversion of the Biot parameters of a porous plate is 

based on the comparison of the theoretical reflection and 
transmission coefficients and the experimental complex 
ones. Each of those latter is obtained via a relevant 
calibration signal. It is the direct signal from the emitter to 
the receiver (the plate is simply removed) for the 
transmission, and the reflected signal onto the water/air 
interface insonified normally thanks to a mechanical 
device, not presented in fig. 1, which enables the emitter to 
be rotated.  

The experimental transmission coefficient is the ratio of 
the Fourier transform of the transmitted signal to the 
Fourier transform of the incident signal onto the plate. This 
latter is obtained by shifting the recorded direct signal of 
the delay time 1- d/c  (d is the thickness of the target and c1 
is the velocity of sound in water). The experimental 
reflection coefficient is the ratio of the Fourier transform of 
the reflected signal onto the plate to the Fourier transform 
of the reflected signal onto water/air interface (the obtained 
complex value is then multiplied by –1 which is the value 
of the reflection coefficient of the water/air interface). 
Diffraction can be neglected because those ratios of Fourier 
transforms are issued from temporal signals recorded under 
identical geometrical configurations regarding the 
transducers and the targets. The experimental coefficients 
are compared to the theoretical ones obtained from a plane 
wave model.  

3.1 Temporal signals 
We use commercially available porous plates 

(350 mm 200 mm 5 mm)× ×  made with a thermal-
hardened silica grains material named QF20 and produced 
by Ferros®.  

Two identical water-saturated porous plates are 
successively investigated: one with open pores and the 
second with its superficial pores of both sides sealed by a 
thin coat of quick setting cement. In figure 2 the direct 
signal and the transmitted ones through those plates are 
plotted.  

One can recognize two parts on these signals: a first part 
similar in shape with the direct signal and then some 
emerging echoes due to internal reflections of the fast and 
slow waves onto the faces of the plates. On the whole, the 
signal issued from the sealed pore plate is simpler because 
the internal slow wave is strongly reduced by sealing the 
superficial pores of the plate.  

Pulse 
Generator  
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Figure 2: Direct signal (black). Transmitted signals by the 
plate with open pores (blue) and by the plate with sealed 

superficial pores (red).  

3.2 Reflection, transmission coefficients 
In the figures below the reflection and transmission 

coefficients of the previous plates are compared in a wide 
frequency range obtained thanks to the association of the 
spectra given by pairs of identical transducers (central 
frequency 500 kHz, and 1 MHz) used following the 
previous experimental procedure presented above.  

As usual, the resonances are located where troughs 
appear on a reflection coefficient while they are located by 
peaks on a transmission coefficient. The frequency intervals 
between a selected kind of resonances lead to the value of 
the celerity of the related wave. So the plots below show 
that within the sealed pore plate almost only the fast wave 
propagates while the two longitudinal waves propagate in 
the open pore plate. In both the studied cases, the influence 
of the slow wave progressively vanishes as frequency 
increases.  

 

 

Figure 3: Modulus of the normal reflection coefficient of 
the open pore plate (blue) and sealed pore plate (red).  

 

Figure 4: Modulus of the normal transmission coefficient of 
the open pore plate (blue) and sealed pore plate (red).  

Biot’s theory is used to inverse the parameters of the 
porous material of the plate. Figure 5 shows a good 
agreement between theoretical and experimental 
transmission coefficients of the QF20 plate. The values 
found for the parameters are gathered in table I below.  

 

 

Figure 5: Transmission coefficient of the 5mm QF20 plate 
(open pores): experimental (dotted line); calculated (red).  

4 Porous cylinders  
We use commercially available cylinders (15.2 mm in 

length and 8 mm in diameter) made with a thermal-
hardened alumina grains material named FAO30 and 
produced by Ferros® too. We investigate the normalized 
backscattered pressure of porous cylinders insonified by an 
incident plane wave perpendicular to their axis. Here, using 
the reflected signal onto the water/air interface as a 
calibration signal is not possible. Because unlike any large 
plane target, only one part of the pulse launched by the 
emitter (4 cm in diameter) is incident onto the cylinder and 
with incidence angles running from 0 to 2π . That is the 
reason why the calibration of the backscattered signal of a 
porous cylinder is achieved thanks to the signal 
backscattered by the same porous cylinder wrapped in a 
thin Teflon® film, insonified with the same incident pulse 
and recorded with the same electronic apparatus chain. In 
the following, we call experimental diffusion coefficient the 
ratio of the Fourier transform of the backscattered pressure 
by the cylinder to the Fourier transform of the backscattered 
pressure of the wrapped cylinder. The determination of the 
Biot parameters of the FAO30 material is achieved by 
finding the best fit between experimental and calculated 
diffusion coefficients. (See table I, below). 

4.1 Temporal signals and results 
Let us consider a cylinder of radius a immersed in a 

fluid in which sound travels with the velocity 0c . Its 
backscattered pressure is obtained in two times: first, 
expanding the incident pressure in the usual modal series:  

- ωt n

inc 0 n n 0
n =0

ip (r, π) = P e ε i J (k r) cos(nπ)∑
∞

, (1) 

and second, adding the backscattered pressures of the 
different modes via the strain stress relations obeyed at the 
water/porous interface. This leads to the general formula 

n (1)

diff 0 n n n 0
n =0

-iωtp (r, π) = P e ε i d H (k r) cos(nπ)∑
∞

, (2) 

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

1921



where 0 0k = ω c and nd  only depends of the scatterer. For 
the soft cylinder it equals this ratio of the Bessel and 
Hankel functions: 

( )
( )

n 0
n (1)

n 0

J k a
d

H k a
= − ,   (3) 

while it is the solution of a (4×4) matrix equation satisfied 
by the scalar and vector potentials for a porous cylinder.  

The following figures 6, 7 show the evidence of the 
behavior of a Teflon® coated cylinder as a “soft” cylinder, 
that is, a cylinder the incident wave onto cannot penetrate 
as in the case of the water/air interface. Teflon is water-
repellent and isolates the porous material from the incident 
pressure which vanishes on its surface.  

 

 

Figure 6: Temporal signals recorded thanks to a 500 kHz 
central frequency transducer: reflection onto the water/air 

interface (bold line) and backscattered by a cylinder whose 
pores are sealed by a Teflon® tape (thin line). The 

amplitude of this latter is multiplied by 10, for convenience. 

 

Figure 7: Temporal signal backscattered by an open pore 
cylinder (blue), sealed pore cylinder (red).  

The inversion leads to a frequency-dependence for the 
permeability of the two studied material.  

 

Figure 8: Permeability: QF20 (red), FAO30 (black)  

The bulk and shear modulus of the dry porous material 
have constant complex values. 

Table I: Parameters of the constituting porous material of 
the studied targets.  

Parameter QF20 FAO30 Unity 
Tortuosity 2 2.35  
Porosity 0.4 0.3  
Water viscosity 31.110−  31.110−  -1 -1kg m s  
Permeability  See Fig. 8 2m
Mean radius of 
the pores 

35 45 µm 

Bulk modulus 
of the grains 

( )36.6 0i+
 

( )228 0i+  GPa 

Bulk modulus 
of the dry 
material 

( )12 0.6i+
 

( )32 0.85i+

 

GPa 

Shear modulus 
of the dry 
material 

( )6.6 0.37i+
 

( )15 0.8i+  GPa 

5 Slow wave  
In order to check if an unknown porous material obeys 

Biot’s theory, it is often set up a simple experiment in 
which fast and slow echoes are well separated and so, the 
evidence of a slow wave is exhibited. The previous 
experimental setup is used to insonify normally the 
water/air interface. The immersed porous plate (1cm thick) 
is placed with its second face in contact with air. The 
normal incident wave produces slow and fast waves inside 
the plate. The strain stress relations for the second interface 
show that there is no wave conversion if the transmission 
coefficient is zero. This configuration enhances the 
reflected waves and makes the localization of the different 
echoes easier.  

The recorded signal is presented in Fig. 9. One can 
easily recognize the specular echo onto the water/porous 
interface followed by three decreasing fast echoes and then 
the first slow echo whose amplitude is stronger than that of 
the third fast echo.  

 

 

Figure 9: Reflected signal onto the porous plate with its 
upper face in contact with air. The central frequency of the 

transducer is 500 kHz.  

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1922



 

Figure 10: Reflected signal onto the immersed porous plate. 
The central frequency of the transducer is 500 kHz.  

Figure 10 shows the reflected signal onto the previous 
porous plate when it is completely immersed. The 
recognition of the different waves is not so easily carried 
out than in Fig. 9. Except for the specular echo, the 
amplitudes are smaller because now a part of the incident 
energy is transmitted in water and wave conversion of the 
fast and slow echoes onto the inner interfaces of the plate 
takes place. Another consequence is the overlapping of 
those more numerous echoes.  

6 Dispersion equations of porous 
QF20 cylinders  

6.1 Open pore boundary conditions 
The complex eigenfrequencies of the porous cylinder 

correspond to the roots 0 0x k a=  of the dispersion equation 
( )o

n 0D 0x =  (see Appendix). The physical parameters of 
water and of the QF-20 material used in the computations 
are given in Ref. 3. The radius of the cylinder is 

2a 0.395 10 m−= × . For each mode n , there appear two 
multiplicities 1,2,...l =  and 1,2...m =  of eigenfrequencies 
that account for the various radial deformations of the 
contour of the scatterer. It can be noticed that no ( )0,m  
modes have been found.  

The Regge trajectories [4] (real parts of 
eigenfrequencies versus mode number) of the family l  can 
be found approximately by solving the dispersion equation 
(4) 

( ) ( ) ( ) ( ) ( ) ( )1 1
f 2 0 n 0 n 0 2 n 0 n2 2x H x J x H x J 0x x′ ′ρ −ρ =  (4) 

of an immersed lossy fluid cylinder of density f 2ρ  and 
wavenumber 2l  (theses two parameters are those of the 
slow wave). The Regge trajectories are presented in Fig. 11. 
Computations not presented here showed that curves 
labeled m  in Fig. 11 have trajectories very close to those 
obtained by solving the dispersion equation of an immersed 
dissipative elastic cylinder (density tρ , wavenumbers 2l  
and tl ). It can be noted that these approximations work for 
the real parts of the eigenfrequencies, not necessarily for 
the imaginary parts. 

 
Figure 11. Regge trajectories of the first families of 

resonances for a QF-20 porous cylinder with open pores. 
Empty boxes : m family. Filled boxes : l family 

6.2 Sealed pore boundary conditions 
The complex eigenfrequencies correspond to the roots 

0x  of the dispersion equation ( )s
n 0D 0x = . As for the open 

pore case, the Regge trajectories presented in Fig. 12 
exhibit two families of curves, l  and m .  

 

 
Figure 12. Regge trajectories of the first families of 

resonances for a QF20 porous cylinder with sealed pores. 
Empty boxes: m family. Filled boxes: l family. 

 
Here, because of the sealing of the superficial pores, the 

radial fluid to solid displacement is null at r a= . Therefore, 
the identification of the porous cylinder response to that of 
a lossy fluid column (density f 2ρ , wavenumber 2l  of slow 
waves) yields the following dispersion equation 

( )n 2J 0x′ = .  (5) 

The real parts of the eigenfrequencies found by solving 
Eq. (4) are very close to curves labeled l  in Fig. 12. Curves 
labeled m  in Fig. 12 look like those in Fig. 11 and it can be 
concluded that the boundary conditions (open or sealed 
pores) do not affect significantly the m  curves. It’s the 
contrary for the l  curves since strong shifts can be 
observed between Figs. 11 and 12. It is also important to 
note that the l  curves are due to the slow wave exclusively. 
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The phase velocity ( )p
0c , xα  and the critical angle of 

excitation 0
αθ  of the α th circumferential wave (α = l  or 

mα = ) can be found according to the formula [5] 

( ) ( ){ }( ) ( )p 0
0 0 0 0 0c , x c x / Re x xnα αα = = θ ,  (6) 

where nα  is the corresponding value of the mode number 
n , which is now considered as a complex continuous 
variable. In Fig. 13, the dispersion curves of the relative 
phase velocity ( )p

0 0c , x cα  are presented for lα =  and 
mα = .   

 

 
Figure 13. Dispersion curves of relative phase velocities 

for open pore conditions 

7 Conclusion  
Both theoretical and experimental results were obtained 

for fluid-saturated porous targets having hydraulic 
conditions at the interfaces. It was shown that the study of 
the resonances of such structures must include also the 
study of simpler models, fluid and elastic cylinders. Open 
pore conditions and sealed pore conditions lead in the same 
frequency range, to a different number of resonances since 
the l  resonances can be strongly shifted when the 
conditions change. As a consequence, a crossing between 
the 1m =  curve and the 1l =  curve occurs. The resonances 
in the form functions, although numerous, are easily 
recognizable. Experiments show that resonances can be 
detected in spite of the strong dissipations in the porous 
material.  

 
Appendix: Dispersion equations ( )o

n 0D 0x = , and 

( )s
n 0D 0x = . The dispersion equation ( )n 0D 0x =  for a fluid 

saturated porous cylinder immersed in the same fluid is 
obtained by application of the boundary conditions at the 
interface r a= . It must account for the admittance 
parameter sκ  characterizing the interface permeability [3, 
6]. Calculations show that  

n,11 n,12 n,13 n,14

n,21 n,22 n,23 n,24
n

n,31 n,32 n,33 n,34

n,42 n,43 n,44

a a a a
a a a a

D
a a a a

0 a a a

=  

with  

( ) ( )12
n,11 0t t n 0a x H x= −ρ , 

( ) ( ) ( )2 2
n,12 1 n 1 1t t n 1a 2x J x x 2n J x′= + ρ − , 

( ) ( ) ( )2 2
n,13 2 n 2 2t t n 2a 2x J x x 2n J x′= + ρ − , 

( ) ( )n,14 n t t n ta 2nJ x 2x J x′= − + , 
( ) ( )1

n,21 0 n 0a x H x′= − ,  

( ) ( )n,22 1 1 n 1a 1 x J x′= + γ , 

( ) ( )n,23 2 2 n 2a 1 x J x′= + γ ,  

( ) ( )n,24 t n ta 1 nJ x= − + γ , 
( ) ( )1

n,31 n 0a H x= − ,  

( ) ( )f1
n,32 n 1 1 1 n 1

0 0 s

ia J x x J x
a

ρ ′= + γ
ρ ρ κ ω

, 

( ) ( )f 2
n,33 n 2 2 2 n 2

0 0 s

ia J x x J x
a

ρ ′= + γ
ρ ρ κ ω

, 

( )n,34 t n t
0 s

ia n J x
a

= − γ
ρ κ ω

, 

( ) ( )n,42 1 n 1 n 1a 2n x J x J x′= −⎡ ⎤⎣ ⎦ , 

( ) ( )n,43 2 n 2 n 2a 2n x J x J x′= −⎡ ⎤⎣ ⎦ , 

( ) ( ) ( )2 2
n,44 t n t t n ta x 2n J x 2x J x′= − + , 

nJ  ( ( )1
nH  resp.) denote Bessel (Hankel resp.) functions, 

nJ′ , ( )1
nH ′ the derivatives with respect to their arguments, ω  

denotes the angular frequency, jt j tρ = ρ ρ , j jx a= l  
( j 0, 1, 2= ), 0t 0 tρ = ρ ρ . The other quantities are defined 

in Ref. 6. If sκ → ∞  (open pores), ( ) ( )0
n n0 0D Dx x→ . If 

0
s

κ →  (sealed pores), ( ) ( )s
n n0 0D Dx x→ .  
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