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In order to analyze coupled resonances, the formalism of the transition terms is used because it easily brings more 
information than a study restricted to the reflection and transmission coefficients. We measure at normal incidence R and T, 
the reflection and transmission coefficients of two aluminum plates separated by a very thin water layer. The transition terms 
are linear combinations of R and T and the coupled resonances appear in separate terms. Under the condition that the previous 
coefficients have been recorded with a common phase reference, it is possible to isolate the resonances well. The vertical mode 
and the resonances of the water layer can be easily located on the spectra of the experimental transition terms. The shifts 
between the resonances of the structure and the resonance frequencies of the symmetric and antisymmetric modes of a unique 
plate are exhibited as well. The technique presented here could be of great interest in the area of the non destructive testing 
(NDT). 

1 Introduction 
We consider two water-immersed identical elastic plates 

coupled by a film of water. The acoustic characterization of 
this structure needs the measurement of its 
eigenfrequencies. The literature is quite abundant about 
these measurements [see e.g. 1]. Usually, the structure is 
insonified by a pulse and the scattered signal is recorded. A 
Fourier transform is applied and the different frequencies 
appear on a spectrum (reflection or transmission 
coefficient). If the peaks related to the resonance 
frequencies do not overlap, the determination of the 
frequency values is easily made on the previous spectra. 
But the coupling gives rise to several resonances whose 
peaks more or less overlap on the plots of the reflection and 
transmission coefficients (R and T). These latter, then, give 
limited information about resonance frequencies. Here, we 
address the case where the elastic system exhibits a plane of 
symmetry. In this case the coupling of modes implies two 
modes with different symmetry: one mode is symmetric 
whereas the other is antisymmetric.  

Issued from S-matrix theory, the two transition terms of 
the structure are linear combination of R and T. As they 
split the resonance frequencies in two separate plots, related 
to the symmetry of the modes, the determination of the 
resonance frequencies becomes easy. There is a good 
agreement between the experimental values and the 
theoretical ones. 

 
2 Theoretical background 

The scattering matrix denoted S is a useful tool devoted 
to analyse the modes of vibration of elastic structures [2-4]. 
It involves both the reflection (R) and the transmission (T) 
coefficients of the structure. For a structure with a plane of 
symmetry such as plates or stacks of plates and loaded with 
the same fluid at each external face, the S matrix takes the 
simple form: 

S = 
R T

T R

⎛ ⎞
⎜ ⎟
⎝ ⎠

.      (1) 

The transition matrix denoted T issued from the S 
matrix by 

 S = I+2 I T,     (2) 
where I is the matrix identity, can be diagonalized in 

two terms corresponding to the symmetric TS and the 
antisymmetric modes TA [4]. These terms obey the 
relationships  

( )S
1

T R T 1
2i

= + − ,    (3) 

( )A
1

T R T 1
2i

= − − .   (4) 

At a resonance frequency the module of these terms 
reaches 1 which is their maximum value. As a preliminary 
conclusion, it can be said that the separation between 
symmetric and antisymmetric modes, and further, the 
separation of the coupled modes becomes possible if the 
complex values of R and T are properly measured.  

The Resonance Scattering Theory (R. S. T.) gives the 
theoretical reflection and transmission coefficients of an 
elastic plate [2]: 

  ( )2
th
1

CaCs 1 1
R

Ca Cs Ca i Cs i
=

− τ
+

+ + τ − τ
, (5) 

 ( )th
1

1 1
T i

Ca i Cs i
= τ +

+ τ − τ
. (6) 

The terms Ca , Cs  and τ  are given in appendix. They 
depend on the Lamé coefficients and density of the plate. 
The reflection and transmission coefficients of two identical 
plates coupled by a film of fluid of thickness Fd  are 
calculated via the latter relations and using the classical 
Fabry-Pérot technique. It comes for an incident wave of 
circular frequency ω :  

( )
( )

th th 2
1 1th th

2 1 2th
1

2
T R ( )

1 R ( )
R = R

ω
+

− ω

Φ

Φ
,  (7) 

( )
( )

2th
1th

2 2th
1

T ( )

1 R ( )
T =

ω

− ω

Φ

Φ
,   (8) 

in which ( )ωΦ  is the phase lag related to the travel of the 
wave in the fluid layer where sound propagates with the 
velocity cF. It obeys the relationship:  

 F

F

d
( ) exp

c
iΦ ω = − ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (9) 

We propose the experimental determination of the 
transition terms as a means for obtaining the water 
thickness and the coupled resonance frequencies. Such a 
coupled structure has yet been discussed in an early 
theoretical and experimental study [5]. This pioneering 
paper showed that the coupled modes can be separated in 
symmetric or antisymmetric, but it was restricted to the 
study of the reflected and transmitted coefficients and 
determination of the frequencies of the modes could not be 
achieved.  
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3 Experimental technique 
The experiment is carried out in two steps using the 

same setup limited to normal incidence (Fig. 1). First, an 
aluminum plate ( 300 mm 200 mm 5 mm× × ) and then two 
identical ones separated by a film of water (0.26 mm thick) 
are immersed vertically in a 2000 liter water tank.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Experimental setup.  

The distance between the transducers is about 1 m and 
the distance between the emitter and the target is about 50 
cm. The targets are insonified with a normal incident pulse 
repeatedly launched by the emitter and produced by the 300 
V discharge of the internal capacitor of the generator which 
also triggers the launching. Using broadband transducers 
(Panametrics® non-focused, diameter of the active element 
4 cm, central frequency 2.25 MHz), the frequency domain 
investigated runs from 140 kHz to 3.5 MHz. The reflected 
and transmitted signals by the systems are stored after the 
electronic perturbations have been eliminated thanks to an 
average of 200 acquisitions. The sampling frequency is 100 
MHz and the recorded signals have 80,000 samples. 

4 Results 
The complete determination of the reflection and 

transmission coefficients of our targets needs the recording 
with the same electronic system of the reflected and 
transmitted signals issued from “calibration targets”, that is, 
whose reflection and transmission coefficients are already 
known. For the measuring of the transmission coefficients 
of one plate and of the coupled structure, the transmitted 
wave through a water layer of the same thickness of each of 
the elastic targets is recorded (transmission coefficient: 1). 
In that case, the direct signal from the emitter to the 
receiver is recorded (the plates are simply removed).  

To obtain the experimental reflection coefficients of the 
previous targets, the water/air interface whose reflection 
coefficient is −1 within the frequency range is used. A 
mechanical device, not represented in Fig. 1, allows us to 
rotate the emitter and so the normally reflected signal onto 
this interface is recorded. Particular attention is paid to keep 
identical distances between a target and the active face of 
the emitter and the water/air interface and this face.  

4.1 Temporal signals 
The recorded reflected and transmitted signals are 

presented in Fig. 2, 3 for a unique aluminum plate and for 
the two plate structure. Those signals exhibit numerous 

echoes onto the faces of the targets; that is strongly 
enhanced in case of coupling which entails an increasing of 
the duration of the signals.  
 

 

Figure 2: Reflected signals (shifted for clarity): onto a 
unique plate (black), onto the two plate structure (red) and 

onto the water/air interface (blue). Amplitude in Volts 
(same amplification). 

 

Figure 3: Transmitted signals (shifted for clarity): 
through a unique plate (black), through the two plate 

structure (red) and direct (blue). Amplitude in Volts (same 
amplification). 

4.2 Reflection, transmission coefficients 
The experimental transmission coefficient of a target of 

thickness d is the ratio of the Fourier transform of its 
transmitted signal to the Fourier transform of the incident 
signal onto it. This latter is obtained by shifting the 
recorded direct signal of the delay time Fd/c− . The 
experimental reflection coefficient is the ratio of the Fourier 
transform of the reflected signal onto the structure to the 
Fourier transform of the reflected signal onto water/air 
interface (its complex value is then multiplied by –1). 
Diffraction is neglected because those ratios of Fourier 
transforms are issued from temporal signals recorded under 
identical geometrical configurations regarding the 
transducers and the targets. This procedure allows us to 
compare the experimental coefficients to the theoretical 
ones obtained from a plane wave model.  

The transition terms of the aluminum plate are plotted in 
Figs. 4, 5. The agreement is good regarding the location of 
the resonance frequencies. But as the normally incident 
acoustic beam onto the target is not perfectly cylindrical, 
some transverse waves are generated and their resonance 
frequencies superimpose to the normal spectra. This 

Pulse 
Generator  
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superposition mainly occurs on the symmetric transition 
term.  

 

 

Figure 4: Modulus of the normal antisymmetric transition 
term of the aluminium plate: experimental (dotted black) 

and calculated (red).  

 

Figure 5: Modulus of the normal symmetric transition term 
of the aluminium plate: experimental (dotted black) and 

calculated (red).  

Within the experimental frequency range, the aluminum 
plate exhibits two antisymmetric and three symmetric 
resonances clearly located in the plots above.  

4.3 Experimental values 
The previous study of the aluminum plate used here 

allowed us to determine its Lamé coefficients: 
54.5 GPaλ =  and µ 26.5 GPa=  with a density of 

32700 kgm−ρ =  leading to 1

Lc 6310 ms−=  and 
1

Tc 3133 ms−=  for the velocity of the longitudinal and 
transverse sound wave in the material. The velocity of 
sound in water is 1

Fc 1478 ms−= .  
It is well known that coupling two identical elastic 

systems at least provides twice as many resonances as a 
unique one does [6]. This is shown in Fig. 6 where the 
transmission coefficient of two coupled plates is plotted.  

 

 

Figure 6: Modulus of the normal transmission coefficient of 
the two plate structure: experimental (dotted black) and 

calculated (red).  

The resonances are more numerous than in the case of a 
unique plate. One can locate the resonances already present 
on the spectra of one of the aluminium plate. Peaks of some 
resonances overlap, while two new ones appear: at a very 
low frequency (≈150 kHz) and at 2845 kHz. On the whole 
there is a good experimental/theoretical agreement, but 
without any separation between symmetric and 
antisymmetric, little information about resonances can be 
extracted from these spectra.  

Three reasons contribute to the augmentation of the 
number of resonances. First, each of the resonances 
(symmetric and antisymmetric) of one plate gives rise to 
two resonances: an antisymmetric one and a symmetric one, 
located at the vicinity of the given frequency of the plate. 
Second, the resonances of the fluid layer are superimposed 
to those latter. The frequencies obey the relationship 

F
F

F

c
f p

2d
=  where p is an integer. This relationship is used 

to determine the thickness of the film of fluid. The third 
kind of resonance is the vertical mode presented in Ref. [5]. 
It is located at a frequency lower than the frequency of the 
first Lamb mode of one plate and strongly related to Fd  but 
weakly related to the incidence angle (Fig. 6, 8).  

The spectra of the experimental and calculated 
transition terms of the two plate structure are presented in 
Figs. 7, 8.  

 

 

Figure 7: Modulus of the normal antisymmetric transition 
term of the two plate structure: experimental (dotted black) 

and calculated (red).  
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Figure 8: Modulus of the normal symmetric transition term 
of the two plate structure: experimental (dotted black) and 

calculated (red).  

On the whole, the agreement is good regarding the 
location of the resonance frequencies. Here too, transverse 
waves superimpose to the normal spectra. This 
superposition comes from the value of the ratio L Tc / c 2≈  
and mainly occurs on the symmetric transition term. Fig. 9 
shows a close-up of the symmetric transition term. As it 
was also pointed out in the theoretical parts of Ref. [5, 7], 
the vertical mode corresponds to a symmetric mode of the 
structure. The experimental vertical mode is located at the 
expected frequency but its amplitude is larger than 1 
because the vertical modes connected to the different 
oblique incidence waves superimpose at the same 
frequency; (it must be recalled that this mode was named 
vertical to emphasize the fact that unlike Lamb wave 
resonances, its resonance frequencies keep an identical 
value whatever the incident angle of the wave) [5, 7]. In 
Table I, the experimental and theoretical values of the 
resonance frequencies of the studied coupled structure are 
compared. The theoretical values are obtained following 
two ways: directly from the plot of the transition terms (Fig. 
7, 8) and from the dispersion relations numbered (4), (5) in 
Ref. [5] which are recalled in the appendix.  

 

 
 

Figure 9: Vertical mode. Modulus of the normal symmetric 
transition term of the two plate structure: experimental 

(dotted black) and calculated (red).  

 
 
 
 

Table I  

 

Symmetric modes (kHz) 

Transition 
term 

Theory Exp. Nature and origin 
related to one 

plate. 

157.3 157.4 155 Vertical mode 

674.8 677.4 678 Issued from S2 

1282.3 1287.6 1287 Issued from A3 

1902.9 1901.3 1913 Issued from S5 

2527.0 2535.1 2531 Issued from A6 

3151.9 3168.8 3159 Issued from S8 

Antisymmetric modes (kHz) 

624.6 633.7 602 Issued from S2  

1247.6 1249.7 1252 Issued from A3  

1864.2 1869.6 1860 Issued from S5  

2448.8 2448.8 2427; 
2528 

Issued from A6  

2841.0 2841.2 2781 Resonance of the 
water layer. 

3231.0 3242.0 3153 Issued from S8  

5 Appendix 
 
This part follows the results of Ref. [5] and recalls the 

dispersion relationships giving ω, the resonance frequencies 
of the studied trilayer (Solid/Fluid/Solid) at normal 
incidence. The thicknesses are respectively Sd  for the plate 

and Fd  for the film of fluid. The density of water is written 

Fρ . It comes successively for the symmetric and 
antisymmetric modes:  

( ) F
F

d 22 CaCs Ca Cs cot 0
c

ω
+ τ − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (A1) 

( ) F
F

tan d 22 CaCs Ca Cs 0
c

ω
− τ − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (A2) 

With  

4

S

T L

d
Ca tan

c 2c

ωω
=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,   (A3) 
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4

S

T L

cot
d

Cs
c 2c

ωω
=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,   (A4) 

4

F F

L T

c

c c

ρ ω
τ =

ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  (A5) 

 

6 Conclusion 
The implementation of the S matrix theory leads to 

separate two close resonances via the amplitude of 
transition. This fact was already pointed out in the literature 
but the experimental evidence was not already achieved. In 
order to show the interest of the theoretical formalism, an 
experimental system composed by two plates coupled by a 
film of water is investigated. The experimental separation 
of resonances in symmetric and antisymmetric modes is 
performed in accordance with theoretical results. The 
method can be used for other systems provided that the 
transmission and reflection coefficients can be properly 
obtained.  
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