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The Constraint Satisfaction Problem (CSP) approach has been used successfully in optimization procedure for
several engineering applications. In this paper this method is evaluated in an inverse procedure for recovering
porous material parameters from acoustical data. The sought parameters are the five of the Johnson-Champoux-
Allard model: porosiy, resistivity, tortuosity, viscous and thermal characteristic lengths. First, the CSP algorithm
is presented: it is based on interval arithmetic and domain reducing algorithms. The procedure is applied to
one virtual porous material to show its potential. Acoustical input data are the density and bulk modulus of the
equivalent fluid to the material at two frequencies (50 Hz and 1000 Hz). The efficiency of the proposed method is
finally discussed.

1 Introduction

The modeling of sound absorbing materials, like mineral
fiber or open cell foams, requires the knowledge of several
parameters like porosity and air flow resistivity [1]. Several
experimental methods exist to determine these parameters.
They can be divided in two categories. The first are based
on non-acoustical experiments. For instance, the determina-
tion of porosity, i.e. ratio of air volume in the material, is
possible by measuring air volumes [2] or by weighting the
saturated sample in several conditions [3]. The disavantage
of such methods is the cost and the number of experimen-
tal set-up required to determine all the parameters. To over-
come these limitations, inverse methods have been proposed:
they are based on the measurement of acoustical properties
like reflection or transmission coefficients of a porous sam-
ple, using standard set-up [4, 5, 6, 7]. These methods may
suffer from experimental limitations and ill conditionning of
the inverse problem [7].

This paper focuses on the mathematical inverse proce-
dure using the Constraint Satisfaction Problem (CSP) ap-
proach, which efficiency has been demonstrated for enginer-
ing applications[8]. The aim is to show the efficiency of
the CSP approach for recovering porous material parameters
from acoustical data.

First, the Johnson-Champoux-Allard [1] (JCA) model us-
ing 5 parameters is recalled. Then, the CSP approach is de-
scribed and applied to one virtual sound absorbing material.
The convergence of the method is finally discussed.

2 Porous material modeling

Johnson-Champoux-Allard [1] (JCA) model is based on
a semi-empirical representation of the porous material ac-
counting for viscosity of the air and thermal exchange be-
tween the air and the skeleton. The skeleton is assumed to be
motionless and its temperature constant. Effect of viscosity
is accounted for in the expression of the dynamic density ρ̃,
given by

ρ̃(ω) = α∞ρ0

[
1 +

1
jω̂

G̃(ω)

]
, (1)

with

G̃(ω) =

√
1 + j

M
2
ω̂, (2)

and ω̂ = ωα∞ρ0
φσ

the dimensionless frequency, M = 8α∞μ
φΛ2σ

the
form factor. The porosity φ , the air flow resistivity σ, the
tortuosity α∞ and the viscous characteristic length Λ are 4 of
the 5 parameters describing the porous material. The density
ρ0 and the viscosity μ are properties of the air. Note that the
tilde indicates a frequency dependent and complex variable.

Thermal effects are included in the expression of the dy-
namic bulk modulus K̃ as:

K̃(ω) =
K0

γ − (γ − 1)
[
1 + 8μ

jωρ0B2Λ′2
G̃′(ω)

]−1 , (3)

with

G̃′(ω) =

√
1 + j

ωρ0B2Λ′2

16μ
. (4)

The thermal characteristic length Λ′ is the fifth parameter to
be determined. K0 is the adiabatic bulk modulus of the air,
B2 the Prandlt number and γ the ratio of specific heats of the
air.

Finally, the properties of the equivalent fluid to the porous
material are [1]: ρ̃eq = ρ̃/φ and K̃eq = K̃/φ. These properties
can be determined experimentally from acoustical measure-
ments using an impedance tube [5, 9, 6]. In this work, they
are computed for a given sound absorbing material (table 1).

Since the inverse procedure works with real literal ex-
pressions, imaginary and real parts of ρ̃eq and K̃eq have been
explicited using Maxima symbolic code.

3 Theory of CSP

3.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a
triplet (X,D,C) such that [10]:

• X = {x1, ..., xn} is a finite set of variables which we call
constraint variables with n being the integer number of
variables in the problem to be solved;

• D = {d1, ..., dn} is a finite set of variable value domains
of X such that: ∀i ∈ {1, ..., n}, xi ∈ di;

• C = {c1, ..., cp} is a finite set of constraints, p being any
integer number representing the number of constraints
of the problem: ∀i ∈ {1, ..., p},∃!Xi ⊆ X/ci(Xi).

A constraint is any type of mathematical relation (linear,
quadratic, non-linear, Boolean, ...) covering the values of a
set of variables. The constraints considered in this paper are
of the following kind: arithmetical, such that x > y + 1; 3x +
2y < z; explicit, in the form of n-tuples of possible values
such that: (x, y), (0, 1), (2,−1), (3, 3).

The variable domains can be discrete, in the form of sets
of possible values, or continuous, in the form of intervals on
real numbers. In our application, the latter description will
be used.
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Figure 1: CSP organigram.

3.2 Solving numerical CSP

Solving a CSP boils down to instantiating each of the
variables of X while meeting the set of problem constraints
C. To do so, the domains di are reduced until the precision
(target size of each domain) is reached.

The algorithm is depicted in figure 1. From the initial do-
main D, a consistency algorithm is applied. It aims at finding
the largest domain for each variable within the initial domain
so that each constraint is verified. If one constraint within the
initial domains may not be satisfied, the domain D is called
not consistent. If the domain D is consistent, it is reduced
by the Branch and Prune algorithm [11]. This algorithm de-
fines the strategy to choose which domain di to reduce first
and how to reduce its size. In our case, the domain reduc-
tion keeps the lower half of the interval. Then, consistency
algorithm is run. If the domain is not consistent, another re-
duced domain is considered (the upper half of the interval,
for instance). The process is stopped when the precision is
reached. In our case, the process will give the lower domain
for each variable. It could be launched several times until all
the solutions are found. In the following, interval arithmetic,
consistency algorithms, and Branch and Prune algorithms are
detailled.

3.3 Interval arithmetic

Consistency algorithms are based on interval arithmetic
[11]. It is a method that can provide lower and upper bounds
for a function with interval unknowns. One of its important
advantages is that it allows computer round-off errors to be
taken into account. The interval evaluation of a function de-
termines an interval that guarantees the inclusion of the exact
lower and upper bounds of this function. We denote x as the
lower bound and x̄ as the upper bound of the interval x. Basic
operations used on floating-point intervals are for instance:

[x, x̄] + [y, ȳ] = [x + y, x̄ + ȳ],
[x, x̄] − [y, ȳ] = [x − ȳ, x̄ − y],
[x, x̄] ∗ [y, ȳ] = [min(xy, xȳ, x̄y, x̄ȳ),max(xy, xȳ, x̄y, x̄ȳ)].
Interval arithmetic has been extended to take into account

other operators. For example, quadratic, trigonometric, loga-
rithmic and other non linear constraints has been developed.
For example if f (x) = x + sin(x) then, the interval evaluation
of f for x in [1.1, 2] can be computed as follow: f ([1.1, 2]) =
[1.1, 2] + sin[1.1, 2] = [1.1, 2] + [0.8912, 1] = [1.9912, 3].

3.4 Consistency algorithms

Several consistency techniques exist in the literature [12].
Let us present Hull consistency that will be used in our ap-
plication.

Let (X,D,C) be a constraint satisfaction problem involv-
ing a vector X of n variables and let [xi] be the domain of
xi. (X,D,C) is said to be hull consistent if for every con-
straint c j in C and ∀i(1 ≤ i ≤ n), there exists two points in
[xi] (lower and upper bounds) which satisfy c j. As an ex-
ample, let’s start with the constraint between two variables:
y = x2 with (x, y) ∈ [0, 1] × [0, 6]. x2 ∈ [0, 1] involves that
x ∈ [−1, 1] ∩ [0, 1], and finally, x ∈ [0, 1]. Then y ∈ [0, 1]2

involves that y ∈ [0, 1] ∩ [0, 6] = [0, 1]. The new cartesian
product (x, y) ∈ [0, 1] × [0, 1] is hull consistent with the con-
straint and the interval of y has been reduced.

3.5 Domain reducing

Domain reducing algorithms as Branch and Prune [11]
start the process by selecting the variable to bisect, i.e. the
first domain di to be reduced. The order in which this choice
is done is referred as the variable ordering. A correct or-
dering decision can be crucial to perform an effective solv-
ing process in case of real-life problems. After selecting the
variable to bisect, the algorithms have to select a subinterval
from the variable domain. This selection is called the value
ordering. It can also have an important impact on the du-
ration of the solving process. In our application, the most
efficient ordering has been found to be first Λ′, then φ, α∞
and finally either σ or Λ.

4 Results

4.1 Causality analysis

The causality analysis [13] allows to determine the mini-
mal set of input parameters which is necessary to instantiate
all the output variables of the problem. In our case, the output
parameters are the 5 sought parameters of the porous mate-
rial: φ, σ, α∞, Λ and Λ′. The input parameters are the fre-
quency dependent properties of the equivalent fluid: ρ̃eq(ω)
and K̃eq(ω). They may be measured using an impedance tube
[5, 9, 6]. The causality analysis consists of finding a path
from the necessary input parameters to the output ones, by
managing a causal graph, i.e. an oriented graph where vari-
ables are linked together via the relations of the problem (see
figure 2).

In the JCA model, K̃eq is function of the 2 parameters (φ,
Λ′) (see section 2). Consequently, the causal graph (figure
2) shows a link between real and imaginary part of K̃eq at
frequency 1 and the couple (φ, Λ′). Those last variables are
linked together in the same block: this indicates that a subset

Re Keq_1 Im Keq_1 Re Rhoeq_1 Im Rhoeq_1 Re Rhoeq_2

phi,  lambda_prime

alpha_infty, sigma, lambda

Im Rhoeq_2

Figure 2: Causality analysis graph.
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of (linear or non linear) equations makes those variables self
dependent.

Moreover, ρ̃eq is function of the 4 parameters (φ, σ, α∞,
Λ). The triplet (σ, α∞, Λ) may be determined by adding
to the couple (φ, Λ′), the 3 following input values: real and
imaginary part of ρ̃eq at frequency 1 and real part of ρ̃eq at
frequency 2. Again, the triplet (σ, α∞, Λ) are in the same
block.

Finally, from the 5 output parameters, imaginary part of
ρ̃eq at frequency 2 may be determined. This variables is not
strictly necessary in the process but may increase its effi-
ciency.

4.2 Application

In this section, the method is applied to one material rep-
resentive of a standard polymer foam used for sound absorp-
tion. The characteristics are given in table 1 with the bounds
of the initial domain. Each variable is considered to be real.

Table 1: Properties of porous material: targeted values,
initial intervals, intervals obtained after first iteration of Hull

consistency algorithm.

Parameter Target Initial Hull (1st it.)

φ 0.98 0.9 1 0.9 0.99
σ (Nsm−4) 15 000 5 000 50 000 9 850 22 055
α∞ 1.05 1 1.5 1 1.33
Λ (μm) 100 10 2 000 37 2 000
Λ′ (μm) 250 10 2 000 102 1 900

The method is applied using the following input param-
eters: real and imaginary parts of K̃eq at 1000 Hz, real and
imaginary parts of ρ̃eq at 50 Hz and 1000 Hz. These frequen-
cies fall within the limits of classical impedance tube.

Figure 3 illustrates the evolution of the solution (lowest
and upper bounds of interval) for each parameter as function
of the precision. The precision is the relative size of the in-
terval to be reached to stop the process. In our case, it is
chosen the same for each sougth variables. A precision of
10−3 means that the size of the interval of each variable is
less than 3 significant decimals. The precision for the input
parameters, i.e. equivalent fluid properties, is 10−10.

The convergence for all parameters can be considered to
be reached for a precision of 10−2. Note that only the first so-
lution is plotted; since the domain reducing starts by keeping
the lower half of the interval, the values are the most often
found below the targeted values. It is noticeable that the in-
tervals for the resistivity is far smaller. This means that the
problem has no solution if σ is not accurately determined.

The previous results may be analysed in terms of relative
error. The error is calculated using the lowest bound of the
interval. For the precision of 10−2, the error is less than 3%
for each variable. For the precision of 10−1, the error is less
than 8% for porosity, tortuosity and resistivity, which is still
satisfactory. However the error is far higher for viscous and
thermal lengths, being 19% and 36% respectively.

5 Conclusion

The ability of the Constraint Satisfaction Problem (CSP)
approach, as an inverse procedure for recovering porous ma-
terial parameters from acoustical data has been evaluated.
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Figure 3: Convergence of parameters as function of given
variable intervals: a) tortuosity and porosity (dashed line);

b) resistivity; c) viscous length; d) thermal length.

The five parameters of the Johnson-Champoux-Allard model
(porosiy, resistivity, tortuosity, viscous and thermal charac-
teristic lengths) may be determined from the density and bulk
modulus of the equivalent fluid known at two frequencies (50
Hz and 1000 Hz). The calculation time for the best precision
is of the order of one second on a standard personnal com-
puter. This makes the CSP approach a good candidate as
an inverse method to recover the five JCA parameters from
experimental data. Indeed, to manage the distance between
the model and real-life data, another level of strategy must
added. As an example, the consistency loop may include a
frequency scan within the frequency range of the experimen-
tal data. Moreover, a global distance parameter may be in-
troduced as a variable in the CSP algorithm. This procedure
will be adressed in future works.
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