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The reconstruction problem of ultrasound medical images using blind deconvolution algorithm has been recognized

as one of the most important aspects in ultrasound images. The image resolution is deteriorated by many parameters

such as noise or diffusive effects in tissues which produce the speckle noise. We intend to present the evaluation

of the CLEAN algorithm, implemented in 1D for the ultrasound image deconvolution. This method supposes

an iterative process for extracting the strongest point in a signal using a ”dirty beam” which in our case is the

estimated PSF. The PSF is extracted using the properties of the Homomorphic deconvolution and the Cepstrum

properties with the outlier resistant de-noising algorithm. Our simulations are focused in two directions. Firstly,

we want to verify how our method work with the reflectivity functions contaminated with different types of noise

and secondly, we test its limits in function of the biological tissues scatters number.

1 Introduction
The medical diagnostic using ultrasounds has intensively

used since the early 1980s, but scanner cost and spatial di-

mensions have limited its use to hospital utilisation for decades

[1]. Nowadays, despite of the technological level, an ul-

trasound image with good resolution is difficult to obtain.

The main problems (which cause a weak resolution) are the

physics problem resulting from reflection, refraction and de-

flection of ultrasound waves from different kinds of tissues

(with different acoustic impedance) and the convolution of

the received signal with the transfer function of the acquisi-

tion system.

The problem of image deconvolution (or, equivalently, restora-

tion or deblurring) naturally arises from this scenario. Its

goal is the enhancement of image resolution and contrast

by the restoration of an estimate of the true image. Image

restoration is a very common problem in image processing,

encountered in a wide variety of technical areas as astron-

omy, seismology, microscopy and medical imaging.

In literature, two main approaches are most common when

dealing with image deconvolution. The first incorporates the

Point Spread Function (PSF) estimation procedure within the

deconvolution algorithm. In the second approach, PSF and

true image estimation are two disjoint tasks. Within this ap-

proach, these procedures can be implemented by relatively

simple algorithms, possibly suitable for real-time implemen-

tation. The most important algorithm utilised in the PSF es-

timation are combined cepstrum and homomorphic decon-

volution properties. First, the method was introduced in ul-

trasound domain in [2]. The estimated PSF was calculated

from the radio-frequency (RF) signal in 1D dimension. This

method has been extended for 2D dimensions (using booth

the RF signals or their envelope) and 3D (with RF signals.)

[3, 4]. The homomorphic deconvolution was improved using

a series of improvements like outliers resistant denoising for

a better reflectivity function and noise suppression or phase

recovery algorithms [5, 6]. All these method were tested in

some deconvolution methods like, Wiener filter or inverse

filter with some regularisation methods. An interesting ap-

proach was proposed also, starting from the initial PSF esti-

mate, a new regularised inverse filter is estimated using the

assumption of band limited spectrum for and the b-splines

properties [7].

The CLEAN deconvolution was proposed in radio astron-

omy by Hogbom in 1974 [8]. The technique is used for

suppressing the lateral side lobes of the acquisition system

of the celestial images. Outside astronomy, CLEAN is ap-

plied to a huge application range. The simplicity of the al-

gorithm (and of its implementation) and the excellent re-

sults have encouraged experimentation and adoption in other

fields [9]. See, for example: optical coherence imaging of

living tissue - magnetic resonance [10], synthesis aperture

AR sonar imaging [11], characterisation of multiple input-

multiple output(MIMO) systems [12], coherent and incoher-

ent microwave imaging [13, 14, 15], data compression [16]

and rinding subsurface objects using seismic waves [17]. In

the ultrasound medical images this algorithm is almost miss-

ing. However, the most important work was proposed in [18].

They propose an iterative deconvolution, inspired by CLEAN

algorithm, designed to deal with both non-minimum phase

transducer impulse responses and scattering events not aligned

with the sampling grid. Also, s study was proposed using

a combination of the CLEAN algorithm and constant false

alarm rate (CFAR) processing, developed for use in radar

systems [19].

In this paper, we proposed a blind time domain deconvolu-

tion, using the CLEAN algorithm to extract the tissues re-

flectivity function from the measured RF signals. Indeed,

CLEAN was able to extract the peaks from a blurred signal

using an specific PSF. Moreover, CLEAN is a method easy to

implement: its main mathematical operation is the subtrac-

tion, easy to execute with low computation power systems.

The purpose of our study, led by the blind aspect and the

novelty, was to make a quantitative evaluation of its perfor-

mances, i.e. how much among the input reflectivity function

signal peaks is recovered and what are the constraints and

limitations. Moreover, once the CLEAN properties to offer

different results in function of the selected exit threshold, we

wanted to test the implication of its value.

The paper is organized as follows: Section 2 presents method

utilised for algorithm implementation; in Section 3 we present

the experiments description and motivation, Section 4 presents

the experiment and results and, in Section 5 conclusions are

presented.

2 Methods description
In this paper, we intended to present a new technique

based on homomorphic deconvolution and CLEAN algorithm

starting from the RF signal envelope. The simulations were

realised for the RF signal whose reflectivity function is sup-

posed to have a non Gaussian distribution. The tissue was

usually composed of diffusive scatterers, superimposed with

a sparse structure of a number of specular reflectors. The

problem was divided in two steps: estimation of the PSF

firstly and, deconvolution secondly using the estimated PSF

to obtain the reflectivity function of the scanned tissues.

The main idea in the ultrasound pulse estimation was that

it was a smooth function and the sparse reflectivity function

had a wide and more uniform spectrum. Using this assump-

tion one can change the signals separation problems in a de-

noising method. For this we used the cepstrum and homo-
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morphic deconvolution properties. In a general case, the re-

ceived signal was the result of the convolution between the

pulse of the ultrasound scanner and the tissue reflectivity:

y(t) = x(t) � h(t) + n(t). (1)

where: � was the convolution operator, y(t) the measured

signal, x(t) the reflectivity function, h(t) the system impulse

response and n(t) is a Gaussian white noise.

If we applied the logarithm to the left and right members of

the spectrum signal presented in Eq. 1 we obtain the Cep-

strum coefficients:

log(Y(ω)) = log(H(ω)) + log(X(ω)) (2)

where log was the natural logarithm. The noise parameter is

removed in Eq. 2 for computation simplicity.

Then we transformed the input signal in a linear operation.

This could discriminate between the signals using the above

presented suppositions that PSF was a much smooth func-

tion and the wave separation problem can be changed in a

denoising one. The used algorithm was proposed in [5, 7].

The main idea of this technique was the use of a denoising

method in the frequency domain by applying a wavelet soft

thresholding and an outlier resistant denoising algorithm. For

decomposition, we use a Daubechies function base and the

level of decomposition was J = 5. The soft threshold was

calculated using the formula T = σ
√

2 log(N) where the σ
is the noise standard deviation and N is the length of the sig-

nal. The σ parameter was estimated from the original signal

using the formula [20]:

σ =
Mx

0.6745
. (3)

where Mx was the median absolute value of the finest decom-

position level.

The second step was the execution of the deconvolution method.

For this level we implemented a 1D version of the CLEAN

algorithm:

1. we started with a copy of original signal which was

called Dirty wave and found the highest point of them;

2. A blank wave, representing the Cleaned wave was set

with the same length of Dirty wave and all positions

equals to zero;

3. The normalised PSF, was multiplied with the value of

the maximum point from Dirty wave and a parameter

γ named ”loop gain”;

4. The resulting PSF was translated with the maximum

point position in the maximum Dirty wave position

and was subtracted from it;

5. We reexamined the residual wave to find the newest

brightest pixel.

The points of subtracting the PSF multiplied by the maxima

of the signal (steps 3, 4, 5) were repeated until an exit cri-

teria is accomplished. This criteria was usually a constant

threshold and the iterative loop was executed until the resid-

ual signal is lower then it.

For this algorithm we use the RF signal envelope from two

reasons. Firstly, it was easier to extract the PSF envelope

without phase recovery, and secondly, the CLEAN algorithm

worked only if the dirty wave was a positive function.

3 Simulations description
For the simulations we use sparse synthetic signals con-

taminated with the Gaussian white noise. The length of the

signals is 512 points the sampling frequency is 20 MHz and

the central transducer frequency is 3.2 MHz. This corre-

sponds to sequence of 160 μs and a approximately 25 cm

deep scanning (for a standard ultrasound velocity c = 1540

m/s).

The purpose of the simulations was to make a statistical point

of view about the proposed deconvolution method in the ul-

trasound domain. We had two important directions of study

in function of the next questions: ”How the proposed method

work in functions of different SNR values?” and ”How the

method work in function of sparsity density of the reflectiv-

ity function?”. Following these questions we made two sim-

ulations presented step-by-step in the follows.

Simulation 1:

1. get a sparse signal with a fixed density f ;

2. for each SNR value

3. for each trial we made: f = f+noise(S NR), the convo-

lution between f and an ideal PSF, the PSF estimation

using the homomorphic deconvolution;

4. for each threshold value make the CLEAN deconvo-

lution and find the number of the true and false peaks

resulted;

5. go to 3. until all number of trials was executed;

6. go to 2. until all SNR values was tested;

7. Results statistical evaluation.

The trials was proposed to generate different noise distribu-

tions for the same SNR which ensured us that the evaluated

signal had different aspects and the obtained result was not

an exception. The ”loop gain” γ for the CLEAN was set to

1. We chose this value because we wanted to make a fast al-

gorithm, and the experimental results showed that it had not

a substantial improvement in the final cleaned signal.

Simulation 2: The second experiment was oriented to study

of the proposed method in the case when the tissues reflectiv-

ity function is more dense. We executed the above presented

algorithm with some modifications. In this case the SNR was

fixed to a value and the sparse density of the signal was mod-

ified.

The evaluation criteria for the algorithm was oriented to ver-

ify how much of the resulted ”Clean wave” had a real signal

and how much not. That means we count after every execu-

tion of the CLEAN method the number of the peaks which

can be considered real or not. We realized a detector which

used a spatial window, with a predefined size. We centred

the window on each original peak position and looked in the

resulted signal if we had or not peaks in it. At the end we

counted the total number of matched positions, which was

the number or real peaks and, total number of false peaks.

The total number of real peaks was divided by the number

of real peaks, for better reading accuracy. Tolerance window

was set to be a little value. For our signal of 512 samples

length the selected tolerance was 1% from the length. In term

of the ultrasound parameters this represented approximately

2,4 mm position error precision.
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4 Results and discussions
The results and discussions were focused on the proposed

experiments and were divided in two categories: the influ-

ence of the noise in the deconvolution algorithm and the in-

fluence of peaks density in signal recovery.

Simulation 1: In the Figure 1 we presented the simulations

results according to different types of SNR. For this simu-

lations we tested the reflectivity function signals with SNR

equal to 5, 10, 15 and 20 dB. In the top was displayed the

peak detection number percentage which represent the num-

ber of the true peaks found for different threshold values, and

in bottom the number of the false alarms according to the

threshold values. We can see that the number of real peaks

recovered by the algorithm was linear dependent and inverse

proportionally with the threshold. This result was caused by

the function reflectivity density, whose peaks were not with

the same amplitude. For a 10% level the number of the real

peaks was approximately 75-80% which could be considered

a good value. The real problems started when the threshold

reach the noise level. We could see that the number of the

false alarms increase exponentially, and offered incorrect in-

formations about the scanned tissues. The false alarms was

also, dependent on the SNR value. From the simulations we

could say that the SNR value has a directly proportional in-

fluence for the false alarms detection.

Figure 1: The results simulations with different types of

SNR. Top: the peak detection number percentage (%) in

function of the threshold value; bottom: the number of false

peaks.

Simulation 2: The second experiment was focused to eval-

uate the performances of this method in function of the num-

ber of peaks which constitute the original sparse signal. In

the Figure 2 we presented the result obtained for sparse sig-

nals with 1, 5 and 10% sparse density. The added noise was

simulated to guarantee a SNR value equal to 15dB. In the

upper graph we showed the percentage of the real extracted

peaks according to the sparsity density, i.e. the number of

the peaks higher then 0 in the original generated signal. One

saw that the sparsity density influence the detection proba-

bility. For example, for a signal with 1% density factor the

algorithm worked in good conditions. For a level of thresh-

old equals to 10% it recovered up then 90% from the original

peaks and has a low level of false alarms, but for a signal

with 10% the percentage was between 50% and 60% for the

same threshold.

Figure 2: The results simulations with different types of

peaks density. Top: the peak detection number percentage

(%) in function of the threshold value; bottom: the number

of false peaks.

Therefore, for the sparse signals with a low density the

proposed algorithm worked well, but for the high densities

the algorithm performance suffered. In the bottom graph of

the Figure 2 is displayed the number of the false detected

peaks, which appeared to not be conclusive for this experi-

ment.The algorithm worked well in scanned mediums with

few reflectivity points and had a low sensitivity to the noise.

Figure 3: The final result for the algorithm. Top: the

original sparse signal; bottom: The resulted Clean version.

The real problems appeared when the density increase.

From our simulations, this problem had one great cause. It

was the problem of the CLEAN algorithm, which was not

able to discriminate 2 peaks when the Rayleigh criterion was

not accomplished (λPS F/2 < d, where λPS F was the wave-

length of the estimated PSF and, d was the distance between

two peaks).

In the Figure 3 we showed the resulted Cleaned version of

the extracted from the RF signal with the Clean method. The

signal had a density equals with 10% from the length of the

signal and a threshold equals to 0.1 from maximum of the en-

velope. The threshold was selected manually using an mod-
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ified ROC curve where the x axis was the number of false

alarms and the y axis was the normalised number of the real

detected peaks. The final amplification was not our purpose,

and for that, we presented the Cleaned version without ampli-

fication factor. The obtained signal appeared to well working

when the peaks was sparse but when there were more dense

the algorithm was not capable to discriminate all of them.

5 Conclusion
The proposed Blind CLEAN deconvolution was a method

which work well when we had a little number of the scatters

in the scanned tissues and it had the capability to improve

the image contrast. Also, it appeared to be able to detect the

peaks until the noise level without trouble. The problems ap-

peared when the signal is more dense. Then the method was

incapable to extract all the peaks, i.e. the proposed method

was incapable to increase the resolution. From the presented

tests we showed that we can go until the Rayleigh criterion.
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