
Improvements in an automatic sound recognition system
using multiple parameters to permit recognition with
noisy and complex signals such as the dawn chorus

N. Bouchera, M. Jinnaib and A. Smoldersc

aSoundID, PO Box 649 Maleny, 4552 Queensland, Australia
bKagawa National College of Technology, 355 Chokushi-cho, 761-8058 Takamatsu, Japan

cUniversity of New England, Armidale, 2350 Armidale, Australia

nboucher@ozemail.com.au

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2453



Improvements in an automatic sound recognition system using multiple parameters to permit recognition with noisy and 
complex signals such as the dawn chorus are described.  We show that with a suitable selection of parameters it is possible to 
work with very noisy signals, and with some limitations down to -20 dB S/N. Because our technique is highly mathematical, 
we show that it is relatively easy to trade CPU time for accuracy.  Alternatively we can trade accuracy for the ability to work in 
very high noise environment significantly below 0 dB. We describe a system that can challenge a human expert at any sound 
recognition task. 

 

1 Introduction 
 When we began the study of sound recognition we 
naturally started with high quality signals that had very low 
levels of noise.  The approach was to transform a sound 
into an image generated using the LPC frequency transform 
(frequency vs energy within a given frame-width) and 
compare that image to a library of images that comprise the 
reference files. The sounds were recorded by professional 
wild-life sound recordists.  They will ordinarily have a 
noise floor of 50 dB or better and the signal will span most 
of the 22050 Hz range. Typically an image will be as seen 
in Figure 1 below. 
 

 
 
Figure 1 A typical professional sound image. 
 
After some development work we were able to achieve 

very high quality recognition of such signals (100% 
accuracy with 0% false positives).  When we moved from 
the development platform to the real world the situation 
was somewhat different.  It was found that such “clean” 
signals as the one above are very rare and mostly the signal 
was competing with other sounds and was buried in a 
significant noise floor. In this paper we discuss the 
techniques that were developed to enable good recognition 
in a noisy environment.  In general, because our technique 
is entirely mathematical we can sacrifice CPU time for 
accuracy and this is increasingly what we are doing. 

2 Noise Characterisation 
 To begin, we noted that the Signal to Noise ratio (S/N) 

that is generally accepted as the limiting value for effective 
voice communications in an analogue system is 10 dB and 
so we began by looking at signals of that level.  The same 
signal (as the one in Figure 1) with 10 dB S/N is shown in 
Figure 2. 

 
 

 
 
Figure 2.  The signal from Figure 1 in S/N of 10 dB. 
 
It is easy to see that if we are to compare these images 

and ask the question are they the same, or even rather 
similar the answer is definitely no!  So we really can’t 
expect the software, that is simply image matching to see a 
similarity.  Intuitively one might suggest that if noise is a 
problem, then simply use noisy references.  This fails on at 
least two levels, firstly that the image is very different for 
different S/N ratios, so we would need a lot of references 
for each signal and secondly the noise is itself not of a 
consistent nature, and so we have references that might lead 
to noise matching with noise.  The noise added in Figure 2 
is pink noise. 

3 Comparing Signals 
 
If we compare the two images of Figure 1 and Figure 2 

using the software we get the result seen in Figure 3. 
Because changing parameters also affects run-time (which 
may be significant for very large runs), we report a batch 
run-time figure in seconds.  This is the time taken by this 
particular software to compare 85 sound images.  The 
actual time is not important, what is, is the relative time. So 
we need to keep in mind that mostly anything that increases 
the precision of the recognition also increases the CPU time 
to run it. Because the system is designed to be able to run 
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terabytes of data, even small increases in run-time can 
ultimately be an issue of some consequence. 

Figure 3 shows not only the images that are matched, 
but the parameters that we can optimise to get the best 
match (at the bottom of Figure 3).  These are the frame 
width (number of points), LPC order, processing bandwidth 
(F1 and F2) and LPC depth (set to be just above the 
effective noise floor). We call a reference file, with its 
settings (all saved in the one file) a template. 

When the images are compared the software will return 
a Geometric Distance (GD) giving the closeness of the 
match.  The GD is a similarity measure developed by one 
of us (Jinnai).  In Figure 3 we see the GD between the 
“clean” signal and the noisy one in a purple text box and 
reading 10.84. This indicates, as would be expected that the 
two images are very dissimilar. A GD of six or less would 
be required to indicate a good matching similarity. 

So what is needed is a way to preserve similarity 
between the “clean” reference calls and their counterparts 
in the real world that is noisy and competing with other 
sounds.  We cannot assume that we have prior knowledge 
of the nature of the noise except of course for the 1/f noise 
that is largely due to the wind.  Provided the targets are not 
calling at frequencies similar to the wind noise filters can 
be used either at the time of the recording or post-recording. 

 
 

 
 
Figure 3. The noisy signal matches with the “clean” one 

with a GD=10.84 (a very poor match). Batch time = 9 
seconds 

3.1 Gate the Problem 
Look closely at Figure 2 and you can see some very 

salient points. Firstly the noise floor is at about 25 dB and 
there is very little information at levels below that.  Also we 
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can see that the image has no recognizable parts (the noise 
floor is not part of the signal) much below 2500 Hz of 
above 8000 Hz.  So one of us, Jinnai, devised a gating 
solution to this. The gate is a frame built around a portion 
of the signal that we want to concentrate on. In figure 4 
below we see the recognizable part of the noisy signal 
gated, as described above. 

 

 
 
Figure 4 The gated noisy signal. 
 
To see that this approach works compare Figure 4 (the 

gated noisy signal) with Figure 5 (the gated “clean” 
reference).  The similarity has been restored.  The one thing 
that spoils the image is the clipping seen in Figure 5 at the 
extremities of the frequency spanned.  This suggests gating 
the frequency from 3000 Hz to 8000 Hz. 

 

 
 
Figure 5.  The gated clean signal. 
 
In figure 6 below we see the gated signal compared and 

that they match to a level of GD=4.90 (good match).  Here 
we need to comment a bit more on the GD.  The way we 
use it, it has units of degrees (angular degrees) where 0 
degree = a perfect match and 90 degrees = no possible 
match.  To a first approximation (and only as an analogy) it 

is reasonable to think of the matching as logarithmic. So a 
match of GD =4.9 compared to a match of GD =10.84 are 
10 )90.484.10( − =10 94.5  apart; that is, there is a huge 
difference in the match. If 4.9 is a good match then 10.84 is 
close to no match at all. In general we would say that for a 
gated signal a GD of less that 6.00 degrees is a good match 
and that anything higher is a non-match. 

So we have made some significant progress by gating 
the signal in such a way that we are focusing on the part of 
the signal least affected by the noise. 

 

 
 
Figure 6. A comparision of the gated figures. Batch 

time= 9 seconds. 
 
The gating approach so far has improved the matching 

and focusing on the most energetic part of the signal has 
improved the matching without increasing the 
computational overhead.  However we now consider an 
approach that will further enhance the noise performance 
but at considerable cost computationally. If we use a higher 
order LPC calculation we will extract more identity 
information from the signal and improve the match. But a 
considerable increase in CPU time will be the price to be 
paid for this.  In Figure 7 below we have done that and can 
now see that the match has improved significantly to GD= 
2.74 degrees.  Notice we have narrowing the frequency 
bandwidth even more and the high order LPC will also 
“enhance” the noise recognition by characterizing it better. 
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Figure 7.  The same signal with the LPC order increased  

from the default of 44 to 250 (batch time =33 seconds).   
 
The CPU time has increase 33/9=3.7 fold.  That extra 
processing time is quite significant and is a real cost of the 
higher resolution. Here it should be noted that there is a 
limit to the LPC order (and hence the improvement we can 
get by increasing it), as a characteristic of the LPC 

transform is that it is unstable at high orders (typically 
>500), but until that point is reach it is generally true that 
higher orders mean better resolution.  

But we still have more tricks.  The software always 
operates on the most energetic part of the signal.  That is, 
once the frame size is defined, the software looks for the 
highest energy section of the signal within the defined 
frame size.  Hence it would seem reasonable that 
decreasing the frame size would focus even more on the 
highest energy portion of the signal and so further enhance 
the noise performance.  As a bonus, because there will now 
be fewer data points to process we should recover some of 
the processing time.  There is a limit to have far we can 
take this as smaller and smaller segments of the signal 
eventually lose some of the detail of the signal and can even 
cause the software to focus on local noise impulses that are 
not part of the signal.  For the type of signal we are 
considering here, something around 1001 points is typically 
optimum. 

 

 
 
Figure 8.  Running the process with 1001 points we now 

have a significantly improved match and reduced run-time 
(Batch run-time =11 seconds) 

 

3.2 Dropping the Noise Floor Further 
We have shown that it is relatively easy to work at the 

limit of intelligibility for humans, (10 dB S/N) but we can 
see that the more we focus on a small part of the signal the 
more of the signals character (its finger-print) is being lost. 
However in some instances this is a reasonable sacrifice 
(for example a lot of recordings of Ground Parrots in 
Australia are held on very noisy tracks and have S/N ratios 
of about -20 dB; fortunately the Ground Parrots occupy 
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areas that few others frequent, so that there is hardly any 
signal competition. And even the other species that do share 
the area have mostly very different calls. That being the 
case the software can extract the calls without seriously 
compromising the accuracy). 

We can reduce the S/N to 0 dB and by setting the 
bandwidth to 6000 Hz to 7200 Hz and setting the frame-
width back to 4001 points we can still get the matching to 
GD=2.55. 

Going even further at -11.5 dB S/N and setting the 
bandwidth to 6300 Hz to 7100 Hz we can still get a 
respectable matching of GD=4.98.  However if you 
compare the image in Figure 9 (S/N=-11.5 dB) with any of 
the other signal images you will see the drastically reduced 
detail in that image, which translates to a much higher 
probability of false positives. However looking at Figure 10 
which compares the WAV file view of the “clean” signal 
with that at -11.5 dB S/N a high false positive should be 
expected. 

 

 
 
Figure 9. The image of the signal at S/N=-11.5 dB 
 

 
 
Figure 10 The wav file view of the “clean” and -11.5 

S/N signals. 

3.3 The Dawn Chorus 
The dawn chorus is a problem for recognition systems 

in much the same way that noise is.  There are a lot of 
competing calls and distant calls blend to become part of 
the noise background. When we first applied the techniques 
discussed above it was found that the recognition accuracy 
was high (much better than 95%), false positives very small 

(less than 1%), but the recognition rate was only about 600 
per hour. Given that the location studied had a very active 
dawn chorus it was considered that the recognition rate was 
insufficient. With some more study it became obvious that 
a single template could be readily optimized for one target, 
but having done so, would be non-optimum for most other 
targets. 

The solution here was to allow each target to have its 
own optimized template. Now we have an improvement 
that seriously affects the processing time.  For each 
template the software must process the whole of the signal 
sequentially.  So for a typical dawn chorus with 10-20 
targets we need a like number of templates and we increase 
the processing time roughly in proportion.  

But it was soon obvious that this was worthwhile.  The 
recognition rate shot up from 600 to 10,000 to 20,000 per 
hour with an increased accuracy.  The reason for the 
increase in accuracy is that the result of each run is 
effectively the same as “listening” for a particular target 
one at a time. Because the results are stored in a matrix that 
includes the time in the recording that the recognition 
occurred it is possible to correct false positives.  If for 
example, two birds that can sometimes be mistaken for 
each are both recognized at the same point in time on their 
respective recognition runs then the matrix can be set to 
replace the less promising recognition (the one with the 
highest GD) with the lower one. 

3.4 How Slow and Why? 
The concept of trading CPU time for accuracy is a 

reasonable one in an era of ever increasing PC power.  
However for now it is a bit of a problem.  Our current 
software is 32 bit and was fine before we introduced these 
latest improvements running at about 100 times faster than 
real-time (we could process 100 hours of recordings in 1 
hour).  Some of our users have terabytes of information 
which is many months of recordings.  Running at 100 times 
faster than real-time still means processing a terabyte over 
the weekend. 

But the gating and multi-reference file can be so costly 
in CPU time that we are down to running in real-time or 
slower for some things like the dawn chorus.  There has 
already been a good deal of optimization done on the 
software, so there is not much chance of gains that way. 

For more than a year now we have been working on a 
64 bit version which promises about a 4 times increase in 
processing speed (for the same processes).  Additionally it 
is much easier to utilize multiple processors in 64 bit (it is 
possible in 32 bit but there are limitations).  So we are 
hopefully looking to at least 20 times faster than real time 
with the 64 bit version.   

The 64 bit version will also run both 2 and 3 
dimensional spectrograms which for some signals improves 
recognition (see Jinnai et al. [1]). 

3.5 How Does it Compare to a Human? 
Even the with now considerably slower processing 

which is a consequence of these new techniques, it is still 
much faster and more accurate than a human. The software 
is effectively comparing 2,000 to 5,000 spectrograms per 
second (it can run even faster with a smaller number of 
templates).  The software also matches small segments of 
the signal (typically 0.025 seconds in duration).  This 
enables it to “catch” a call from within a noisy dawn chorus 
in a fortuitous time slot that a human might miss. Humans 
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need at least 0.100 seconds to process a sound and quite a 
bit longer to make any real sense of it. 

The reference library that the software uses is almost 
unlimited (it could have more than a billion separate calls in 
its reference library), which far exceeds the capacity of 
most humans. 

In tests we have run against acknowledge avarian 
experts the software excels in both accuracy and speed.  

3.6 Real-time Recognition 
We are currently building a real-time version of this 

system (called an Autonomous Recording Unit (ARU)). 
The system is a PC based recorder that will process what it 
records in real-time and have I/O (input-output 
capabilities). Uses for this include activating an SMS or 
other device when a particular species is head (e.g. a rare 
bird, frog or bat), issuing alarms to deter the recognized 
species from entering the area (e.g. birds on runways) and 
categorizing sounds in vocalization studies (e.g. real-time 
vocalization recognition of dolphin calls).  

5 Conclusion 
We have demonstrated that it is possible to exceed the 

capabilities of even a human expert with the software that 
we describe so long as the settings for the templates are 
appropriate. Entirely new possibilities including large scale 
acoustic surveys, acoustics searches for rare and 
endangered species are now feasible.  
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