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It is known that periodic structures (PS) exhibit frequency intervals where sound waves do not propagate (i.e. band
gaps, BG). The existence of the band gaps is attributed to the periodicity (i.e. the Bragg BG) and the properties
of a periodic element. The later substantially enhances the performance of the PS if it supports resonances that
generate additional BG (resonant BG). By changing geometrical and physical properties of the periodic element
the resonances can be observed below the first Bragg BG (associated with the half of sound wavelength) that makes
PS effective treatment in the low frequency regime. The aim of this paper is to approximate the limiting frequencies
(lower and upper bounds) of the generated low-frequency resonant BGs. The PS is represented by an array of thin
elastic shells exhibiting multiple low-frequency resonances. In the vicinity of lower bound the approximation is
found by means of the Rayleigh Identity which leads to the Foldy-type equation. The upper bound of the resonant
BG is approximated with the help of matched asymptotic expansions. This gives an accurate approximation for
the upper bound approaching the first Bragg BG where the contribution of effects related to the periodicity has to
be taken into account.

1 Introduction

Structures supporting band gaps are of great interest for
many years [1]. For the electromagnetic waves the theory on
the periodic structures has been employed to describe their
propagation through the crystals. Example of simple appli-
cation of the periodic structures can be taken from the design
of band-pass filters. In acoustics these structures can be used
to effectively control sound at low-frequencies. Noise barri-
ers are one of the potential applications of periodic structures.
To optimize the performance of these structures one needs to
know the frequencies of the band gap bounds.

The existence of band gaps attributed to the distance be-
tween the scatterers arranged in the periodic array have been
studied experimentally, numerically and analytically. The
homogenization technique derived for the periodic structures
can be employed to find the band gap limiting frequencies
[2, 3]. In particular the first band gap observed in the first
Brulloin zone for the square arrangement of rigid scatterers
(Neumann boundary conditions) is approximated by the fol-
lowing limiting frequencies [2]
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The Bragg frequency ω0 = πc/L corresponds to the half
of wavelength that fits the distance between the scatterers
(L). The results are based on the low filling fraction F =
πa2/L2 � 1. For the soft circular scatterers (Dirichlet bound-
ary conditions) the first band gap starts from zero frequency
[4, 5] ω1 = 0. Its upper limit can be approximated by the
low-frequency approximations that give
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within which constantC brings the periodic arrangement con-
tribution. The second band gap related to the first Bragg fre-
quency can be defined by the following limits [6]
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This approximation involves parameter η that describes the
influence of the periodic arrangement.

For the arrangement of the resonant scatterers the addi-
tional band gaps are observed [7, 8]. They existence and po-
sition are attributed to the scatterer resonances (so-called lo-
cal resonances). The homogenization technique can be again
employed to find the approximate limiting frequencies. In
this paper the resonant scatterer is represented by a cylindri-
cal elastic shell that exhibits multiple resonances below the
first Bragg frequency. Using the Rayleigh Identity [9] and

matched asymptotic expansions (MAE) it is possible to de-
rive accurate approximations of the band gaps related to the
local resonances.

2 Rayleigh Identity

Consider acoustic problemwhere waves propagate through
a doubly periodic square array of thin elastic shells with lat-
tice constant L. The array of scatterers is surrounded by an
acoustic environment with density ρo and speed of sound co.
The elastic shell is characterised by its density ρ, the Young’s
modulus E and Poisson’s ratio ν. In this paper we consider
solution p(r) of the Helmholtz equation defined in the polar
coordinates r = (r, θ). It is also assumed that the solution is
time-harmonic exp(−iωt).

The scattering coefficient of the thin elastic shell can be
approximated by

Zn = −
[J′n(koa)]2[1 − (k3a)2 + n2]

J′n(koa)Y′n(koa)[1 − (k3a)2 + n2] + [n2 − (k3a)2]Q
,

(4)
where Z−n = Zn, ko = ω/c, Q = ρo(ρπah)−1, a is the shell
mid-surface radius, h is its half thickness and k3 = ω/c3 with
c3 =

√
E/[ρ

(
1 − ν2

)
]. The coefficient (4) tends to the rigid

scatterer limit as Q→ 0 so that

Zn = −
J′n(koa)
Y′n(koa)

. (5)

It is also noted that coefficients (4) have singularities that cor-
respond to resonances of the elastic shell.

For the doubly periodic array, the solution p(r) of the
Helmholtz equation is also subject to the quasi-periodic con-
ditions that are

p(r+ R j) = eiβR j p(r), R j = n1a1 + n2a2, n1, n2 ∈ Z, (6)

within which vectors r and R j are defined in Cartesian co-
ordinates, R j defines the position of j-th lattice cell and β is
wave vector.

Conditions (6) leads to the algebraic system of equations
with respect to the unknown coefficients Bn, −∞ < n < ∞,

that forms the Rayleigh Identity

Bn +

+∞∑
m=−∞

(−1)m−nσm−n(ko, β)ZmBm = 0, −∞ < n < ∞, (7)

where σn(ko, β) represents the lattice sum [10]. This homo-
geneous algebraic system has to be truncated and then zeros
of the determinant of coefficient matrix have to be found.
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The latter gives dispersion relation between frequencyω and
wave vector β. In Figure 1 the dispersion relation is plot-
ted in the first irreducible Brulloin zone defined by the fol-
lowing nodes Γ = (0, 0), M = (π, 0) and K = (π, π). The
first wide band gap is observed around koL = 1.5 that cor-
responds to the axisymmetric resonance of the thin elastic
shell. The second wide band gap is positioned around the
first Bragg frequency that corresponds to the case when half
of sound wavelength fits the distance between the scatterers.
The bound of the second band gap can be estimated by the
equations (1) derived by McIver [2].
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Figure 1: Eigenvalue solution obtained for the doubly
periodic array of elastic shells [7].

The first wide band gap is observed below the Bragg fre-
quency and its bounds are of main interest in this paper. It is
immediately noted that the lower bound ω1 of this band gap
tends to the value of the local resonance [11]. This could be
explained by the standing wave generated by the axisymmet-
ric resonance. That gives

ω2
1 = ω

2
0 + πc2

oQ, (8)

where term Q defines the interaction of the acoustic environ-
ment with the elastic shell and ω0 = c3/a corresponds to the
resonance of shell in vacuum. Note that the lower limit of
this band gap is independent of the geometry of the periodic
array.

To derive the upper bound one can use Foldy’s type dis-
persion relation given by

β2
= k2

o −
4
A

F, (9)

where F =
+∞∑

n=−∞

Zn represents the far field pattern. This equa-

tion is true for the wavelength much bigger than the radius of
scatterer and the lattice constant that is koa � 1 and koL � 1.
For the local resonances observed far below the first Bragg
frequency equation (9) gives accurate approximations for the
upper bounds of the corresponding band gaps. In the first
irreducible Brillouin zone the upper bound is found in the
vicinity of βL = 0. In particular for the axisymmetric reso-
nance with the dominant scattering coefficient Z0 the disper-
sion relation (9) is expanded in Taylor series with respect to
koa � 1 that gives

ω2
2 = ω

2
1 + F (2ω2

1 − ω
2
0), as βL→ 0, F → 0, (10)

Figure 2 illustrates the accuracy of Foldy’s approxima-
tions. It is observed that by approaching the first Bragg fre-
quency the accuracy of Foldy’s approximation is deteriorat-
ing. In particular this is true for the upper bound of the band
gap generated by the axisymmetric resonance. For the upper
limit the accuracy range is decreased to 5.5% compared to
3.5% observed around the upper bound (koL = 0.55) of the
band gap gnerated by the shell resonance with index n = 1.
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Figure 2: Foldy approximation (9) (dashed line) compared
with the semi-analytical solution of Rayleigh Identity (7)

(solid line).

To create more accurate approximation one needs to in-
clude the influence of the quasi-periodic conditions defined
in (6). This requires to relax the condition koL � 1 im-
posed earlier to derive the Foldy’s approximation (9). For
this reason the technique based on the matched asymptotic
expansions is employed in the next section.

3 Matched asymptotic expansions

The asymptotic expansions are found in outer and inner
regions. Near the scatterer the solution p(r) is subject to the
boundary conditions imposed on its surface. The characteris-
tic length of this region is the radius a of scatterer that defines
the inner scaling of radius vector r as

ξ = r/a. (11)

In the outer region the solution p(r) is less affected by the
geometry and physical properties of the scatterer that results
in the following coordinate scaling

ζ = kor. (12)

It is only required that wavelength is much bigger than radius
of the scatterer (koa � 1). This allows koL = O(1).

3.1 Outer expansion

In the outer region the scatterers are replaced by the point
sources O j in each cell and the solution is subject to the
quasi-periodic conditions (6). This gives

Ψ(r, θ) =
+∞∑

n=−∞

An

∑
R j∈Λ\{0}

eiβR j H(1)
n (kr j)einθ j , (13)
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where (r j, θ j) are the local coordinates with origin at O j.
The leading order of coefficients An, n ∈ Z is estimated

by the small parameter [13, Section 6.8] that is

η =
1

K − log ε
, (14)

with unknown constant K. Thus

An = ηÂn. (15)

The use of addition theorem [12] and transformation to the
reciprocal lattice Λ∗ in equation (13) converts it to the form
that includes lattice sum [6]

σn(ko, β) = −δ0,n + iσY
n (ko, β), −∞ < n < ∞. (16)

It is assumed here that for n = 0 imaginary part of lattice
sum (16) contributes to the outer solution as

σY
0 (ko, β) =

δ

η
, with δ = O(1). (17)

Then expanding outer solution in terms of the inner coordi-
nate ξ up to order η leads to

Ψ
(η,η)(ξ) = iÂ0

[
δ −

2
π
+ η

2
π

(
K + γ − log 2 + log ξ

)]
. (18)

3.2 Inner expansion

The inner solution has to satisfy the boundary conditions
imposed on the surface of single thin elastic shell. This gives

ψ(r, θ) =
+∞∑

n=−∞

BJ
n [Jn(kor) + ZnYn(kor)] einθ (19)

where BJ
n is unknown constant and Zn is defined by equa-

tion (4). In the vicinity of axisymmetric resonance scattering
coefficient Z0 is O(η) that gives

Z0 = δZη, with δZ = O(1). (20)

Expanding the inner solution (19) up to the order η we
arrive at

ψ(η,η)(ξ) = BJ
0

[
1 −

2
π
δZ + η

2
π
δZ log ξ

]
. (21)

3.3 Matching

Matching the outer solution (18) and the inner solution
(21) we compare firstly factors of log ξ in order η that is

Â0 = −iδZ BJ
0. (22)

The consistency of the leading orders in (18) and (21) re-
quires that

Z0 σ
Y
0 − 1 = 0. (23)

The derivation of dispersion relation (23) is based on equa-
tions (17), (20) and (22).

Figure 3 demonstrates the improvement in approxima-
tion of the band gap upper limiting frequency near the ax-
isymmetric resonance. For the bigger radius of elastic shell
(a = 0.0375) m the upper bound of the band gap is affected
by the effects associated with the periodicity. As a result the
approximation of the upper bound based on Foldy’s equa-
tion (9) is not valid anymore (the results are accurate within
30%). However the results based on MAE technique are ac-
curate within 1%.
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Figure 3: Foldy approximation (9) (dashed line with circles)
and MAE results (23) (dashed line) compared with the

semi-analytical solution of Rayleigh Identity (7) (solid line).
(a) a = 0.0375 m. (b) a = 0.007 m.

4 Conclusion

The Foldy’s type dispersion relation can be used to es-
timate the limiting frequencies of the band gaps generated
by the local resonances. This however cannot be used to ac-
curately estimate the limiting frequencies close to the first
Bragg band gap. The improved dispersion relation based
on matched asymptotic expansions includes the effect asso-
ciated with the periodicity. The approach described in this
paper can also be employed to find the bounds of band gaps
related to the local resonances of higher order.
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