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The structural optimisation of structures with constrained viscoelastic layers is a major issue in the design of sub-
marines, to assure stealthiness performances. This work proposes reduction methods to solve the system composed
of a mechanical structure with embedded viscoelastic material coupled to fluids in the frequency domain. These
numerical strategies are applied to the response of a bidimensional sandwich ring coupled to external fluid ; and
extended to a tridimensional structure.

1 Introduction
Viscoelastic damping is a common technique in indus-

trial applications to reduce the vibrations of a structure and
to control the level of noise. In naval shipbuilding, it has
been used since the 1960s to enhance submarine stealthiness
performance. The viscoelastic material is generally embed-
ded in the structure as a constrained layer since damping is
proportional to shear stress. During the design process of
some particular parts of a submarine, engineers have to op-
timize the position and the material parameters of this vis-
coelastic layer. In order to evaluate acoustic radiation of the
submarine, the external fluid has to be taken into account and
coupled to the vibrating structure with viscoelastic treatment.
The goal of this work is to present reduction methods to cal-
culate the frequency response of the sandwich structure with
viscoelastic core, coupled to fluid. Several reduction meth-
ods are tested on a bidimensional structure. The strategy is
then extented to a tridimensional structure.

2 Description of the bidimensional
structure

A bidimensional ring made of steel with partial viscoelas-
tic core and radial stiffeners in steel, immersed into water is
considered. The model, shown in Figure 1, is fixed at the in-
tersection of the stiffeners and a unit radial load is applied at
the left part of the structure.

F=1N

h =1mmc

h=0.1m

R=1.5m

h =0.02ms

External
fluid

Viscoelastic
layers

Figure 1: Description of the studied problem

The viscoelastic layer is made of Paulstra’s Deltane 350
whose shear modulus and loss factor are represented as a
function of frequency on Figure 2. The expression of the
complex shear modulus describing the frequency dependence
of the viscoelastic material’s properties is given by a frac-
tional Zener model :

G∗(ω) =
G0 + G∞(iωτ)α

1 + (iωτ)α
(1)

The relaxed and unrelaxed moduli G0 and G∞, the relaxation
time τ and the order of the derivation α are identified from the
experimental master curves of Deltane 350 at 12oC (Figure
2) :

G0 = 1.88 MPa, G∞ = 0.78 GPa, τ = 0.15 10−6 s, α = 0.5
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Figure 2: Master curves of Deltane 350 at 12oC (crosses :
experimental datas, line : fitted results)

The structure is meshed with plane stress 2-node beam
elements with 4 degrees of freedom per node, as in [1]. This
element is based on ’zigzag’ theories : Timoshenko assump-
tions are made for the viscoelastic core, while Bernoulli as-
sumptions are taken for the elastic faces.

The mechanical displacement field within the ith layer is
written in the local coordinate system (x, z) :

uxi(x, z, t) = ui(x, t) − (z − zi)θi(x, t) (2)
uzi(x, z, t) = w(x, t)

where uxi and uzi are the axial and transverse displacement,
i = a, b for the upper and lower faces and i = c for the core,
ui and θi are the axial displacement of the centre line and the
fibre rotation of the ith layer, and w is the transverse displace-
ment. Due to the kinematics of the sandwich beam, they can
be written in terms of ū, w′ and ũ, (see details in [2]) as de-
fined by :

ū =
ua + ub

2
, ũ = ua − ub, w′ =

∂w
∂x

(3)

The axial displacement is discretized with linear shape func-
tions while cubic shape functions are used for the deflexion.
The interpolation matrix N relates the generalized displace-
ments de = [ū,w, ũ]T to the elementary degrees of freedom
qe = [ū1,w1,w′1, ũ1, ū2,w2,w′2, ũ2]T : de = Nqe. With this
discretization, the governing equation becomes :[
−ω2 (Ma + Mb + Mc) +

(
Ka + Kb + K∗c(ω)

)]
q = Fe (4)

where Mi and Ki (i = a, b, c) are the global matrices obtained
by assembling the element matrices Me

i and Ke
i of each layer,

given by :

Me
i =

∫ Le

0
ρiAi

(
NT

xiNxi + NT
z Nz + NT

riNri

)
dx, (5)

i = a, b, c
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Ke
f = E f

(
A f

∫ Le

0
BT

m f Bm f dx + I f

∫ Le

0
BT

b f Bb f dx
)
, (6)

f = a, b

Ke
c = G∗c(ω)

[
2(1 + ν)

(
Ac

∫ Le

0
BT

mcBmcdx+ (7)

Ic

∫ Le

0
BT

bcBbcdx
)

+ kcAc

∫ Le

0
BT

scBscdx
]

where Le is the length of the physical element e, ρi, Ei, Ai

and Ii are respectively the density, the Young modulus, the
section, and the moment of inertia of the ith layer. Gc and
kc are the shear modulus and the shear correction. The line
matrices Nxi, Nz, Nri, Bmi, Bbi and Bsc are directly linked to
the interpolation matrix N. For convinience, the stiffness and
mass matrices of the structure are denoted K∗S(ω) and MS,
with K∗S(ω) = Ka + Kb +G∗c(ω)Kc and MS = Ma + Mb + Mc.
The effect of the external fluid on the structural vibrations
is taken into account through an added mass matrice. An
analytical solution for the pressure field exists for a water-
submerged bidimensional circular shape body. This solu-
tion is obtained by expressing the radial displacement of the
structure and the external pressure in the fluid as Fourier se-
ries. An added mass operator for the external fluid, denoted
Ma

F, is thus derived from the coupling term of the governing
equations of the coupled system, as described in [3].
The system to be solved is :[

K∗S(ω) − ω2(MS + Ma
F)

]
u = F (8)

where K∗S(ω) is the frequency-dependent stiffness matrix of
the structure with viscoelastic layer, MS is the mass matrix
of the structure, and Ma

F the added mass matrix due to the
presence of external fluid.

3 Numerical results of the bidimensio-
nal structure

The frequency response of the structure with viscoelas-
tic layer, coupled to the external fluid at the excitation point
can be obtained by a direct method which consists in solving
Eq.8 for each frequency (Figure 3). On this figure, the two
results corresponding to the undamped sandwich structure
(G = G0) and the damped one (G = G∗(ω)) are presented.
The viscoelastic treatment results in a significant reduction
in the displacement levels.
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Figure 3: Direct frequency response of the structure

The pressure in the fluid is calculated at a given frequency
from the corresponding displacement of the structure using
the analytical relationship between the fluid pressure and the

Fourier coefficients of the radial displacement in the adopted
modelling of the external fluid (see [3] for details). Figure
4 shows that the fluid can be taken incompressible as both
compressible and incompressible hypothesis lead to similar
levels of pressure in the external fluid. Therefore, in the se-
quel, the fluid is taken as incompressible.
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Figure 4: Pressure field in the external fluid at f = 100 Hz
for an incompressible (top) and compressible (bottom)

hypothesis for the external fluid.

For larger models, the calculation of the frequency re-
sponse is time consuming as the stiffness matrix needs to be
evaluated at each frequency and the added mass matrices are
full: reduction methods are thus of great help.
Most reduction techniques are based on Ritz approximation
which consists in assuming that the full order degrees of free-
dom u can be estimated by a linear combination of well cho-
sen independent vectors Ti :

u = Tq (9)

where q is the reduced order degrees of freedom. The re-
duced system is then obtained by projecting Eq. 8 on the
reduction basis :[

TTK∗S(ω)T − ω2(TTMST + TTMa
FT)

]
q = TTF (10)

3.1 Modal projection
The usual reduction basis of a modal projection consists

of low frequency normal modes
(
φi

)
and a static correction

Ts to account for high frequency modes :

T =
[(
φ∗i

)
, Ts

]
(11)

where
(
φ∗i

)
are solution of[

K∗S(ωi) − ω2
i

(
MS + Ma

S

)]
φ∗i = 0 (12)
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and the static correction corresponds to the static solution to
the load evaluated at a high frequency modulus

Ts = K−1
S|(ω=ωc )

F. (13)

The computation time of complex damped modes by it-
erative algorithms is generally not compensated by the ad-
vantages of using reduction techniques. Therefore, real pro-
jection basis are usually looked for. For structures with low
damping, considering real undamped modes in the modal re-
duction basis can give fair results :

T1 =
[(
φi

)
, Ts

]
(14)[

K0
S − ω

2
i

(
MS + Ma

S

)]
φi = 0 (15)

with K0
S = <(K∗S(ω = 0)). However, for highly damped

structures, the real undamped modes are not sufficient to ac-
count for the frequency shift induced by the high depen-
dency on frequency of the material properties. Several ap-
proaches are possible for the construction of an enriched re-
duction base efficient for highly damped structures : use of
normal pseudo-modes, multi-model, introduction of residual
[4]. The multi-model approach is adopted here. It consists in
adding a set of real normal modes associated with a stiffness
matrix calculated at a high frequency modulus G∗(ωc),

(
ψi

)
:

T2 =
[(
φi

)
,
(
ψi

)
, Ts

]
(16)[

<(K∗S|(ω=ωc )
) − ω2

i

(
MS + Ma

S

)]
ψi = 0 (17)

The two projections are compared to the direct frequency re-
sponse on Figure 5. The 48 first real undamped modes and
a static correction are considered in the first basis. In the en-
riched basis, on addition to the static correction, the 24 first
real undamped modes and the 24 first real modes associated
with a shear modulus evaluated at the frequency fc = 200Hz
are taken. Figure 5 shows that the first reduction leads to
overestimated damping and underestimated amplitudes and
that the enrichment made in the second reduction gives a
more accurate response.
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Figure 5: Frequency response of the damped structure by a
direct method, a modal projection of Eq.8 on basis

T1 = [φ1..48 ,TS] and a modal projection of Eq.8 on basis
T2 = [φ1..24 ,ψ1..24( fc = 200Hz) ,TS]

3.2 Component mode synthesis
Component synthesis method is a substructuring coupling

method for which the structure is divided into components.
For each component i, the degrees of freedom ui are divided
into interface degrees of freedom ui

J and internal degrees of

freedom ui
J̄
. The interface degrees of freedom are considered

as unknowns and the internal degrees of freedom are reduced
using a reduction basis T : ui

J̄
= Tqi

J̄
. By imposing continu-

ity along component interfaces, components are coupled and
the dynamic behaviour of the overall structure can be calcu-
lated from the resolution of a reduced system whose degrees
of freedom are q = [∪i(ui

J),∪i(qi
J̄
)].

The Craig-Bampton method is a reduction method commonly
used to reduce the internal degrees of freedom in model sub-
structuring. The Craig-Bampton reduction basis, in the first
level of approximation, consists of low frequency fixed-inter-
face normal modes

(
φi

)
and a static condensation Ts :

TCB =
[(
φi

)
, Ts

]
(18)

where
(
φi

)
are real undamped fixed-interface modes of the

component solutions of(
K0

S,J̄J̄ − ω
2
i

(
MS,J̄J̄ + Ma

S,J̄J̄

))
φi = 0, (19)

and the static condensation Ts corresponds to the static re-
sponse of the internal degrees of freedom to imposed unit
displacements on the interface degrees of freedom

[uJ,uJ̄]
T = TsuJ = [I,−K−1

J̄J̄|(ω=ωc )
KJ̄J]

TuJ (20)

The structure of Figure 1 is divided into two substructures.
The first corresponds to the ring with partial viscoelastic core
and the external fluid, and the second to the stiffeners (Figure
6).

Component 1 Component 2

Figure 6: Substructuring of the structure

The component mode synthesis is applied to the substruc-
turing of Figure 6. The first 24 real undamped modes are
taken for each component. The frequency response function
of the structure calculated from this method is compared to
the frequency responses obtained by a direct method and by
a modal projection without enrichment on Figure 7.

The component mode synthesis gives similar results to
the modal projection on a basis without enrichment which
is expected as for both methods, only real undamped modes
are considered. An analogy between the modal projection
and the component mode synthesis leads to enrich the Craig-
Bampton reduction basis with fixed-interface modes calcu-
lated for a high frequency modulus. This enriched compo-
nent mode synthesis is compared to the direct method and
to the enriched modal projection on Figure 8, and proves to
be efficient to predict the frequency behaviour of the damped
structure.

Table 1 gives the comparisons of the different methods
in terms of normalized computation time of the frequency
response function, precision with respect to the direct solu-
tion and size of the reduced model to be solved. The error is
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Figure 7: Frequency response of the damped structure by a
direct method, a modal projection of Eq.8 on basis

T1 = [φ1..48 ,TS] and a component mode synthesis applied
to the substructuring described on Figure 6 with 24 modes

per component.
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Figure 8: Frequency response of the damped structure by a
direct method, a modal projection of Eq.8 on basis

T2 = [φ1..24 ,ψ1..24( fc = 200Hz) ,TS] and an enriched
component mode synthesis applied to the substructuring

described on Figure 6 with 12 real undamped fixed-interface
modes and 12 fixed-interface modes calulated with a shear

modulus evaluated at the frequency fc = 200Hz per
component.

evaluated as follows:

ε(F) = 100
∫ ωmax

ωmin

(
F(ω) − Fref(ω)

Fref(ω)

)2

dω (21)

where Fref is the direct frequency response function and F
is the frequency response function evaluated by a reduced
method.

The component modes synthesis allows easy paralleliza-
tion of the calculation of component’s modes, and is expected
to be more efficient than the modal projection method for
structures with a high number of degrees of freedom.

4 Extension to a tridimensional struc-
ture

The enriched modal projection proposed in the previous
section is applied to the tridimensional structure represented
on Figure 9. The structure is made of steel and a viscoelastic
layer (thickness 5 mm) of Deltane 350 is introduced at the
core of the cylindrical shell. The diameter of the structure
is about 4 m, while the thickness is of the order of 0.2 m.
The boundary conditions and load are similar to the ones ap-
plied to the bidimensional structure. The mesh is composed
of 35000 quadratic tetrahedra, which represents about 80000

Table 1: Comparison of reduction methods.

Compu-
tational
time
(%)

Error
(%)

Size of
reduced
model

Direct method 100 - -

Modal projection 2.5 3.5 (48 × 48)

Enriched modal
projection 2.8 10−5 (48 × 48)

Component mode
synthesis 3.5 3.8 (64 × 64)

Enriched
component mode
synthesis

3.5 0.8 (64 × 64)

degrees of freedom. As a first approach, in order to test the
efficiency and accuracy of the proposed reduced method, the
fluid is not taken into account.

Figure 9: Tridimensional structure studied.

The constitutive behavior implemented is that of Hooke’s
law for which the stresses and strains have been separated
into spheric (subscript s) and deviatoric (subscript d) parts :

σ = Cε (22)

where C = KCs +GCd with K the bulk modulus, G the shear
modulus, Cs = [1 ⊗ 1] and Cd = 2[I − 1

3 (1 ⊗ 1)]. 1 and I
denotes the second and the fourth order unit tensor respec-
tively, in Voigt notation. The behavior law allows to consider
frequency dependent shear and bulk moduli. In this study,
the bulk modulus is real and constant, K =, and the shear
modulus follows the fractional derivative model described in
the first section.
The frequency response function of the structure is calculated
with a direct method, and compared to the one obtained with
the proposed reduced method for varying number of modes
used in the reduction basis. The modes ψi of the enriched
basis and the static correction are evaluated at a modulus cal-
culated at 200 Hz. Figure 10 and Table 2 show that the en-
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riched modal projection gives accurate results. The last col-
umn of Table 2 gives the ratio between the maximum eigen-
frequency max( fi) of the modes ψi taken in the reduction ba-
sis to the maximum of the frequency range investigated fmax.
The computational time of the frequency response function
is reduced by a ratio of about 60 when using a reduced basis.
The deformed shape of the structure at 197 Hz is shown on
Figure 11.
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Figure 10: Frequency response function of the structure
calculated from a direct method and an enriched modal

projection using 20, 35 and 50 modes φi and ψi.

Figure 11: Deformed shape of the structure at 197 Hz.

Table 2: Convergence of the enriched modal projection
method.

Number
of modes

Error
(%)

max( fi)
fmax

20 5.9 1

35 4.0 1.5

50 3.6 2

5 Conclusion
This works presents a methodology to solve viscoelasti-

cally damped vibroacoustic problems. The enrichment of the
modal projection basis or the Craig-Bampton basis applied to

a water-immersed ring viscoelastically treated proved to be
an efficient method to predict the vibrations of the structure
and the pressure level in the fluid at low cost.
Remaining efforts concern the application of the component
mode synthesis to a tridimensional structure coupled to fluid.
A more thoroughly study of the experimental identification
of viscoelastic materials properties is under progress.
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