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Harmonic imaging has historically occurred with the introduction of ultrasound contrast agents such as microbub-
bles. These agents, due to their nonlinear behavior, have provided a great increase in the contrast of ultrasound
images. Although this modality has revolutionized the clinical practice, it still suffers from the presence of har-
monics in the echo of the tissue that reduces its efficiency. One way to overcome this problem was to turn to the
sub- and ultra-harmonic imaging based on the reception of sub-harmonics ( 1

2 f0) and ultra-harmonics ( 3
2 f0, 5

2 f0, ...)
generated by the microbubbles at high pressure levels. Nonlinear existing models like Volterra series are able to
model harmonics only. In this paper, we proposed an extended Volterra model able to model and extract these sub-
and ultra-harmonics. Results showed that sub- and ultra-harmonics were extracted and separated from other har-
monic components. Signals backscattered by the medium infused with microbubbles can be accurately represented
by the derived model. The gain achieved with our method was 3.7 dB compared to the standard Volterra modeling.
In the frequency domain, the spectrum of the simulated signal has described perfectly that of the microbubble.

1 Introduction

The diagnostic capabilities of ultrasound imaging have
been greatly improved by the intravenous injection of ultra-
sound contrast agents such as microbubbles [1]. This contrast
enhancement is due to two principal reasons. From one hand
side, the acoustic impedance of microbubbles is largely dif-
ferent than that of tissues [2, 3] and, from the other side, the
response of microbubbles is nonlinear [2, 4]. This non linear-
ity is directly observable through the presence of harmonics
that can be extracted by filtering [5]. For instance, in second
harmonic imaging, the principle is to excite the medium at
a frequency f0 and to reconstruct the image at the first har-
monic i.e. around 2 f0 [5, 6]. However, the generation of
nonlinear components during the propagation in tissue limits
the contrast. These nonlinear components can be reduced in
part by reducing the emitting pressure [5, 6, 7, 8]. One alter-
native solution to distinguish microbubbles from surround-
ing tissue is to use the difference in signatures between the
two media through sub- and ultra-harmonic imaging. Un-
like tissues, experimental studies have shown the existence
of sub- and ultra-harmonics in the response of microbbubles
[1, 6, 8, 9]. In ultrasound contrast imaging, subharmonic
imaging consists of emitting at a frequency f0 and receiv-
ing at the sub-harmonic f0

2 while ultraharmonic imaging is
based on the reception of ( 3

2 f0, 5
2 f0, ...). Many in vitro stud-

ies showed the possibility of the application of subharmonic
imaging in early detection of the angiogenesis around tu-
mors [3]. The reception of sub-harmonics may be done us-
ing a narrow band transducer for the reception with center
frequency 1

2 f0[3, 10].
In order to improve the image contrast, it is necessary

to understand the behavior of microbubbles. Indeed, the dy-
namics of the microbubble is quite well understood and many
nonlinear models have been proposed [2]. Various modifica-
tions were performed to accommodate the microbubble shell
and the nonlinearities, including the Rayleigh-Plesset modi-
fied equation [11, 12, 13].

Although these models accurately simulate the oscillation
of microbubbles, other models that consider the system to be
studied as a black box, have been used to optimally model
microbubbles signals. The best known one is the Volterra se-
ries which has a capacity to describe the input-output behav-
ior of nonlinear dynamic systems [14]. Volterra series have
already been employed in ultrasound contrast imaging and
contributed to increase the contrast of images [15]. These se-
ries, that are able to model and extract the harmonic compo-
nents only [14], are power series of integer orders. However,
there is no simple mathematical model able to extract sub-
and ultra-harmonics from microbubbles signals. However

the modeling of sub-harmonics using Multiple Input Single
Output (MISO) Volterra series is discussed in [16]. This ap-
proach is unable to extract these components and separate
them from other components.

We proposed in this study an original solution based on
the Volterra series that enabled to model and extract sub-
and ultra-harmonic components. The originality in this work
resided in the simplicity of the proposed method that used
existing mathematical operators.

2 Materials and Method

The purpose of our dissertation was to develop a Volterra
series based model to model microbubbles signals in pres-
ence of sub- and ultra-harmonics of order 1

2 ( fn = n
2 f0, where

n is an odd integer) and to extract them. The nonlinear sys-
tem to be identified was the microbubble excited by a pres-
sure wave x(n) (the input signal). By solving numerically the
nonlinear differential equation of a microbubble, subjected to
a pressure signal, the backscattered signal by the microbub-
bles y(n) (the output signal) was obtained (see Figure 1).

The dynamics of a microbubble were simulated by solv-
ing the Rayleigh-Plesset modified equation using Hoff’s met-
hod [11]. The incident wave to the microbubble was a sinu-
soidal signal apodized with Hanning window, of frequency
f0 = 4 MHz, 1.6 MPa pressure, and 32 cycles. Under the
previous frequency and pressure conditions, the oscillation of
the microbubble is nonlinear including sub- and ultra-harmon-
ics [8]. The backscattered signal was sampled fs = 36 MHz.
The parameters of microbubbles are shown in table 1.

Table 1: Parameters of microbubbles [11].

resting radius r0 = 2μm

shell thickness dS e = 4nm

shear modulus Gs = 50MPa

shear viscosity η = 0.8Pa.s

2.1 Volterra model

The Volterra model is equivalent to a power series de-
composition of integer orders. To model and extract the sub-
and ultra-harmonic frequencies, we proposed to extend the
standard Volterra series by adding a component dedicated to
them.
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Volterra series were introduced as Taylor series with mem-
ory. Let y(n) be the scattered signal by the medium infused
with microbubbles. The output y(n) can be expressed in terms
of the present and previous inputs x(n) and x(n − k), respec-
tively. The general form of the Volterra model (3,m), of order
3 and memory m, in the discrete time was as follows [17]:

ŷ(n) = h0 +

m−1∑

k1=0

h1(k1)x(n − k1)

+

m−1∑

k1=0

m−1∑

k2=0

h2(k1, k2)x(n − k1)x(n − k2)

+

m−1∑

k1=0

m−1∑

k2=0

m−1∑

k3=0

h3(k1, k2, k3)x(n − k1)x(n − k2)x(n − k3).

(1)
where ŷ(n) was the observed output sequence associated with
the input sequence x(n), and hp(k1, k2, . . . , kp) were the Volterra
kernels of order p of the development. The order 3 of the
Volterra series is sufficient given the limited bandwidth of
ultrasound transducers [14]. If the function Vm

H were the
Volterra model, ŷH(n) could be expressed as:

ŷH(n) = Vm
H (x(n)). (2)

The Volterra’s coefficients hp(k1, k2, . . . , kp) were obtained
by minimizing the mean square error between the two signals
y(n) and ŷH(n) (Figure 1):

arg min[(y(n) − ŷH(n))2]. (3)

The calculation method was similar to that developed by
[14] but without the Cholesky decomposition.

Microbubble

 Volterra
  model 

x(n) -

y(n)

e(n)
y (n)
^

H

V
H

m 0

Figure 1: Identification of the nonlinear system of the
microbubble with the Volterra model.

2.2 Extended Volterra model

The extended Volterra model that we proposed, allowed
identifying the harmonic, sub-harmonic, and ultra-harmonic
components. The corresponding output sequence of our ex-
tended Volterra model could be written as follows:

ŷ(n) = Vm
S UH(x(n)). (4)

The solution that we proposed consisted of two parts:

Vm
S UH(x(n)) = Vm

H (x(n)) + Vm
S U(x(n)). (5)

A part that modeled exclusively the harmonics:

ŷH(n) = Vm
H (x(n)), (6)

and another that modeled the sub- and ultra-harmonics:

ŷS U(n) = Vm
S U(x(n)). (7)

The reconstructed signal of the microbubble was then:

ŷ(n) = ŷH(n) + ŷS U(n). (8)

2.3 Numerical procedure

The numerical procedure was written with Matlab (Math-
works, Natick, MA, USA). It included the following steps:

1. Modeling of integer harmonics: it was the Volterra
model (3,m). The obtained signal was given by equa-
tion (6);

2. Modeling of sub- and ultra-harmonics of order 1
2 :

(a) The analytic signal ya(n), whose spectrum con-
tained only positive frequencies was modulated
by multiplying it by an exponential having a fre-
quency 1

2 f0. The modulated signal was then:

yamod (n) = ya(n)e(2 jπ
f0
2 n)
, (9)

with:
ya(n) = y(n) + jH(y(n)), (10)

where H(y(n)) was the Hilbert transform of y(n).

From a spectral point of view, the modulation
shifted the spectrum by 1

2 f0. Indeed, if the spec-
trum of y(n) included 1

2 f0 and f0 components,
then the spectrum of yamod will be composed of
f0 = ( 1

2 f0 + 1
2 f0) and 3

2 f0 = ( f0 + 1
2 f0) compo-

nents. The signal yamod contained shifted sub- and
ultra-harmonics instead of harmonics.

(b) A Volterra model of order (3,m) identified the
real part of the modulated signal R(yamod (n)) by
minimizing the following relation:

arg min[(R(yamod (n)) − ŷ2(n))2]. (11)

The Volterra model extracted the harmonic com-
ponents around n f0 (n is an integer) which were
initially the sub- and ultra-components. The mod-
eled signal became:

ŷ2(n) = Vm
H (x(n)). (12)

(c) The analytic signal ŷ2a (n) was demodulated with
a frequency (− 1

2 f0), that shifted the harmonic com-
ponents as well as the sub- and ultra-harmonic
components back to their original positions.

The demodulated signal became:

ŷ2ademod
(n) = ŷ2a (n)e(−2 jπ

f0
2 n)
. (13)

The double application of the Hilbert transform
introduced a negative sign. For this reason, we
multiplied the demodulated signal by e jπ. In or-
der to obtain the positive and negative frequen-
cies of the demodulated signal we considered its
real part merely. We obtained:

ŷS U(n) = R(ŷ2ademod
(n))e jπ

= −R(ŷ2ademod
(n)).

(14)

The final modeled signal ŷ(n) was obtained by adding the
two signals ŷH(n) and ŷS U(n) as given by equation (8). The
extended Volterra model was symbolized by (3, 1

2 ,m) where
3 is the model order, 1

2 is the coefficient of modulation and
m is the model memory. Figure 2 showed the different steps
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Figure 3: Blockdiagram of the two systems S 1 et S 2.

of the extended Volterra model while figure 3 showed both
systems S 1 and S 2 .

The relative mean square error RMSE used to evaluate the
accuracy of our method was given by:

RMS E =
|ŷ(n) − y(n)|2

|y(n)|2
, (15)

where ŷ(n) was the final signal reconstructed by the extended
Volterra model and y(n) was the signal backscattered by the
microbubble.

3 Results

To verify the efficiency of our method, we applied both
the Volterra model (3, 4) as well as the extended Volterra
model (3, 1

2 , 4) to a synthetic microbubble signal. The mi-
crobubble was insonified with the sine pulse described in sec-
tion 2 et the backscattered signal was then calculated.

Qualitatively, Figure 4(a) shows the backscattered sig-
nal y(n) and that modeled by the extended Volterra model
(3, 1

2 , 4) ŷ(n) versus time. Figure 4(b) shows the difference
between y(n) and ŷ(n). Figure 4(c) shows the harmonic sig-
nal ŷH(n) obtained with the standard model (3, 4), and fig-
ure 4(d) shows the sub- and ultra-harmonic signal ŷS U(n) ex-
tracted with the extended model (3, 1

2 , 4).
Figure 5 shows the spectra of the various signals shown

in figure 4. The spectral composition of these signals was in
good qualitative agreement with figure 4. These figures show
that sub- and ultra-harmonics components were modeled, ex-
tracted and separated from other harmonic components.

Quantitatively, table 2 shows a comparison of the RMSE
between the the signal modeled with the extended model and
that modeled with the standard model. The gain achieved
was 3.7 dB (the difference between RMSE between the re-
constructed signal with the extended Volterra model and the
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Figure 4: (a) Backscattered signal y(n) by the microbubble
and the reconstructed signal ŷ(n) by the extended Volterra
model of order (3, 1

2 , 4). (b) Error signal between y(n) and
ŷ(n). (c) Harmonic signal ŷH(n). (d) Sub- and

ultra-harmonic signal ŷS U(n).
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Figure 5: (a) Spectrum of the microbubble signal y(n) and
the reconstructed signal ŷ(n) by the extended Volterra model
(3, 1

2 , 4). (b) Spectrum of the error signal between y(n) and
ŷ(n). (c) Harmonic spectrum ŶH( f ). (d) Sub- and ultra-

harmonic spectrum ŶS U( f ).

backscattered signal (−11.5) dB and the RMSE between the
reconstructed signal with the standard Volterra model and the
backscattered signal (−7.8) dB with the application of the ex-
tended Volterra model).
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Table 2: Relative mean square errors RMSE (dB) between
the signal backscattered by the microbubble and that

modeled with the Volterra model (3, 4), and between the
signal backscattered by the microbubble and that modeled

with the extended Volterra model (3, 1
2 , 4).

Model Standard Volterra extended Volterra

RMSE (dB) −7.8 −11.5

4 Discussion

The ultrasound contrast agents promoted the generation
of sub- and ultra-harmonics that did not show up in the echo
of tissues. The application of the extended Volterra model
on simulated signals of microbubbles showed a high effi-
ciency to extract and recover sub- and ultra-harmonics of or-
der 1

2 : fn = n
2 f0 apart of harmonics. This result overcame

the weakness of the standard Volterra model which modeled
harmonics only. Extracted sub- and ultra-harmonics could
be used to make sub- and ultraharmonic contrast imaging in
order to produce high contrat images.

In addition, the extended model modeled the microbubble
signal with a gain 3.7 dB compared to the standard Volterra
model. In the frequency domain, all the frequency compo-
nents of the backsacttered signal were correctly reconstructed.
The identification process of the parameters enabled model-
ing of signals even at very high excitation pressure (1.6 MPa)
known to exhibit sub-harmonics.

5 Conclusion

In our dissertation, we proposed an extended Volterra mo-
del. The originality of this model lied in enabling the extrac-
tion of sub- and ultra-harmonics components of microbub-
bles signals. In addition, modeling the microbubble signal,
may be performed even at high pressure levels, unlike the
standard Volterra model.

This method enabled the separation of sub- and ultra-
harmo-nics components. Such tool could be greatly effective
in the field of ultrasound contrast imaging. Especially the
sub- and ultra-hamronic contrast imaging.

This work could be able to complete by calculating the
parameters of sub- and ultra-harmonics in order to separate
them, and developing an automatic method to calculate the
contrast-to-tissue ratio (CTR) using these parameters.
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