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This paper describes a new method for acoustic liner impedance eduction. The eduction process aims at finding the

liner impedance which minimizes the error between numerical simulations and a set of measured data. The method

relies on the resolution of the two-dimensional Linearized Euler Equations in the frequency domain, spatially

discretized by a Discontinuous Galerkin scheme. The minimization of the objective function is achieved by the

resolution, at each iteration, of the direct and adjoint equations. This leads to an analytical expression of the

objective function derivatives. The process is benchmarked on pressure measurements found in the literature, in

a no-flow configuration. Results compare very favorably to the reference curves, except at the anti-resonance

frequency of the material where a small discrepancy occurs. A numerical investigation is also made to show the

possibility to educe liner impedance from acoustic velocity measurements.

1 Introduction
To reduce the noise generated by the turbofans, aircraft

manufacturers usually mount acoustic treatments in the na-

celle. These liners are typically made of honeycomb cells

topped by a perforated sheet, working on the principle of

Helmholtz resonators. Optimization of the resulting passive

noise reduction requires an accurate knowledge of the acous-

tic liner properties in the conditions of use, which include

the presence of a grazing flow. These properties are repre-

sented by the acoustic impedance, an homogenized quantity

defined locally as the ratio between the acoustic pressure at

the surface of the material over the normal acoustic velocity.

Various methods exist for the measurement of liner acoustic

impedance with grazing flow. Dean [1] introduced an in-situ
technique relying on two microphone measurements respec-

tively at the rear wall of the liner cavity and at the surface

of the perforated sheet, associated to a propagation model

inside the cavity. At ONERA, the acoustic impedance is

deduced from Laser Doppler Velocimetry (LDV) measure-

ments above the liner. To access the acoustic pressure at the

surface of the perforated sheet, these velocity measurements

are combined to either a Galbrun propagation model [2] or to

acoustic pressure measurements [13].

Over the past few years, the limitations of existing tech-

niques motivated the development of inverse methods for

liner impedance eduction. The principle is to use a numerical

or analytical propagation model to find the liner impedance

which, in the best possible way, reproduces acoustic mea-

surements made in a duct test rig. To achieve this, an ob-

jective function representative of the distance between mea-

sured and simulated quantities is minimized. NASA has brought

valuable contribution with a robust method based on acous-

tic pressure measurements on the rigid wall opposite the test

liner [3] and a finite element model. Indirect processes based

on a 3-zones duct model (upstream, above and downstream

of the liner) with a mode matching approach are also used

[4, 5]. However these methods can suffer from the lack of

information nearby the lining sample.

A new eduction method is currently being developed at

ONERA. It is planned to be based on velocity measurements

acquired by LDV above the liner. The propagation model re-

lies on the two-dimensional Linearized Euler Equations (LEE)

in the frequency domain to account for a sheared flow profile

in further developments. The gradient of the objective func-

tion is calculated thanks to the adjoint system of equations.

This offers the advantage to provide an analytical expression

for the derivatives, while the finite difference method gen-

erally used introduces approximation errors and has a com-

putational cost which increases with the number of search

parameters. Both direct and adjoint system are spatially dis-

cretized by a Discontinuous Galerkin (DG) scheme, which

particularly suits the considered problem in the way to ex-

press the boundary conditions.

In section 2, the governing equations and the discretiza-

tion scheme are presented. The principle of the impedance

eduction process is then exposed in section 3. Benchmark-

ing is done in section 4 with data available in the literature,

before introducing the velocity-based eduction process and

giving some concluding remarks.

2 Governing equations and numerical
method

2.1 Propagation model
The propagation model relies on the two-dimensional LEE.

A steady incompressible mean flow, with velocity U0 along

the streamwise coordinate x1 and V0 along the transversal

coordinate x2, is subject to an acoustic perturbation ϕ =

(u, v, p)ᵀ. The duct configuration typically considered is shown

on figure 1.
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Figure 1: Generic geometry of the duct

The governing equations are written in a dimensionless

matrix form, for an e jωt time dependence:

jωϕ + Ai∂iϕ + Bϕ = 0 (1)

with

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
U0 0 1

0 U0 0

1 0 U0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
V0 0 0

0 V0 1

0 1 V0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂1U0 ∂2U0 0

∂1V0 −∂1U0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

The symbol ∂i (i ∈ �1, 2�) represents the spatial derivative

with respect to the coordinate xi. Velocities are nondimen-

sionalized by c0, pressures by ρ0c0
2, lengths by the duct height

H and time by H/c0. The speed of sound c0 and the density

ρ0 of the mean flow are considered uniform.

A Discontinuous Galerkin formulation is used to solve

these equations numerically. The domain is partitioned into
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Figure 2: An element Ωe adjacent to the computational

boundary.

Lagrange P1 elements denoted Ωe (see figure 2). The numer-

ical solution vector over an element is written ϕe
h. A vari-

ational formulation is established over the element Ωe for a

test function ψe
h:

∫
Ωe

(
jωϕe

h + Ai∂iϕ
e
h + Bϕe

h

)
· ψe

h dΩe

+

3∑
k=1

∫
∂Ωe,k

F(ϕe
h
−,ϕe

h
+,n) ·ψe

h
− dΓ = 0 (4)

where the superscript “ − ” (resp. “ + ”) indicates the interior

(resp. exterior) trace of the solution. It is the value of ϕe
h

inside (resp. outside) the element Ωe at an interface with

other elements or with the domain boundary, depending on

the edge k considered. n = nixi is the outward unit normal to

the boundary ∂Ωe. The function F(ϕe
h
−,ϕe

h
+,n) describes the

connection to the neighbouring elements and the boundary

conditions, and includes the choice of a numerical flux which

will not be detailed here for the sake of brevity. Several cases

are to be considered for the expression of F.

• The edge is an internal edge. Incoming and outgoing

waves are distinguished using the hyperbolic proper-

ties of the equations, which allows to build an upwind

numerical flux. Then:

F(ϕe
h
−,ϕe

h
+,n) = Ain−i

(
ϕe

h
+ −ϕe

h
−) (5)

with Ain−i the matrix corresponding to the negative

eigenvalues of Aini.

• The source boundary condition is introduced through

a vector ϕ0 by writing:

F(ϕe
h
−,ϕe

h
+,n) = Ain−i

(
ϕ0 −ϕe

h
−) (6)

• Non-reflective boundary conditions are achieved by can-

celling the incoming waves, leading to a characteristic

boundary condition described by:

F(ϕe
h
−,ϕe

h
+,n) = −Ain−i ϕe

h
− (7)

• The impedance boundary condition, which plays a key

role in the present problematic, is written:

F(ϕe
h
−,ϕe

h
+,n) =Mβϕ

e
h
− (8)

where

Mβ =
1

2

(
(β + 1) n ⊗ n −(1 − β)n
−(1 + β)nᵀ (1 − β)

)
(9)

β = z−1
z+1

is the reflection coefficient. The above impedance

condition expresses the classical definition of the nor-

malized specific impedance z:

z =
p

vini
=

p
vn

(10)

The use of a β-formulation instead of a z-formulation

avoids singularities to arise in the case of rigid walls.

Note that contrary to most of similar methods, the Ingard-

Myers [6] condition is not required as the process is

intended to be used with no flow or with sheared flow

profiles.

The final formulation is easily obtained by expressing ϕe
h

and ψe
h as a linear combination of the basis functions and by

summing over all the elements.

2.2 Adjoint system of equation
The eduction process requires the minimization of an ob-

jective function J describing the distance over an observa-

tion region between measured and calculated data. A general

form of this objective function is:

J =
∫
Ω

‖ϕcalc −ϕmeas‖2 IΩobs (x) (11)

where IΩobs (x) is the indicator function of the observation re-

gion Ωobs such as

IΩobs (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ Ωobs

0 if x � Ωobs
(12)

At each iteration of the eduction process, the gradient of

J is needed to find a new set of parameters which should

lead to a smaller objective function. The gradient is often

calculated by means of a finite difference method, but this

leads to an approximate result and a calculation cost increas-

ing with the number of parameters to be educed. Use of the

adjoint equations allows on the other hand to obtain an ana-

lytical expression for the derivatives of J .

If the liner impedance zl is obviously a search param-

eter to be considered, a choice has to be made regarding

which other quantities should be included in the eduction

process as parameters. Eversman & Gallman [7] propose

an eduction method where termination impedance and effec-

tive Mach number are parameters of the search process. The

method presented here includes termination impedance zt, as

well as a calibration coefficient C ∈ C to adjust the amplitude

and phase of the source to the measurements.

The adjoint system of equations may be determined by

the method of Lagrange multipliers, considering the direct

equations (1) and the associated boundary conditions as con-

straints. The adjoint state is defined as the Lagrange multi-

plier ϕ∗ satisfying the following system, called “adjoint sys-

tem”:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− jωϕ∗ − ∂i

(
Ai†ϕ∗

)
+ B†ϕ∗ = ∂ϕJ on Ω

M∗
βϕ
∗ = 0 on Γl

Ain+i ϕ∗ = 0 on Γt ∪ Γs

(13)

The symbol † denotes the Hermitian conjugate. The adjoint

impedance matrix is given by M∗
β = Aini +M†

β. Further de-

tails on the determination of the adjoint system can be found

for example in [8] in the case of an optimal control problem.

The directional derivatives of the objective function can

then be expressed as a function of the direct and adjoint states:

∂J(ϕ, z,C)

∂zl
= −〈∂Mβ

∂β

∂β

∂zl
ϕ,ϕ∗〉Γl (14)
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Figure 3: Diagram of the eduction process

and
∂J(ϕ, z,C)

∂C
= 〈Ain−i ϕ0,ϕ

∗〉Γs (15)

Equation (14) also holds for the termination Γt, described

by an impedance zt.

3 Impedance eduction process
At each iteration on the search parameters, the direct and

adjoint equations are solved. As the derivative of J with re-

spect to ϕ appears in the right-hand side of the adjoint equa-

tion (13), the direct system must be considered before the

adjoint system. Once the adjoint equations are solved, at a

computational cost comparable to the resolution of the direct

equations, the gradient ofJ is calculated with equations (14)

and (15). A new set of search parameters is then defined by

a BFGS algorithm [9] to reduce J until one of the stopping

criteria is met.

The global eduction loop is synthesized on figure 3. Note

that an interpolation of the raw test data is necessary since

generally the nodes of the numerical mesh do not match the

location of experimental points.

4 Benchmark with pressure measure-
ments

The propagation model presented above has already been

validated on academic test-cases and compared with exper-

imental results in a previous paper [10]. Benchmarking of

the eduction process is realized here on data published by

the NASA Langley Research Center [11]. In this reference

paper, the authors educe the acoustic impedance thanks to

a finite element model of the convected Helmholtz equation

and acoustic pressure measurements at the rigid wall oppo-

site the lining sample.

Using these acoustic pressure measurements, in the case

without flow, our eduction process has been applied with the

following objective function:

J(ϕ, z,C) =

N∑
m=1

‖pm
calc − pm

meas‖2 (16)

where N=31 is the total number of microphones.

Two analyses have been conducted: the “NRp” case uses

a non-reflective boundary condition (equivalent to zt = 1.00+

0.00 j) at the termination plane, whereas in the “EIp” case

the exit impedance is included as a search parameter. The

configuration of the duct is represented on figure 4.

x1

x2

O

Microphones

zl

Hard wall Liner Hard wall

Outlet
(exit impedance zt )
51 mm

0 mm 203 mm 609 mm 812 mm

Acoustic wave

Figure 4: Geometry of the NASA Grazing Incidence Tube

(GIT)

The comparison between exit and liner impedance values

educed with the method presented here and the NASA val-

ues is presented on figures 5 and 6. The results compare very

favorably to the reference. The only discrepancy occurs at

2 kHz which is the anti-resonance frequency of the studied

liner, where attenuation is minimal. The difficulties expe-

rienced by eduction methods at anti-resonance have already

been observed and are presently under consideration [12].

This can be illustrated by the fact that the objective function

is not very sensitive to changes in the impedance at this fre-

quency, as indicated by the flat valley around the minimum

on figure 7. On this figure, the objective function has been

made dimensionless so that it can be interpreted as an error

on the target value:

Jred =

∑N
m=1 ‖pm

calc − pm
meas‖2∑N

m=1 ‖pm
meas‖2

(17)

It appears that a 0.5 % error only is made on the objective

function with a resistance varying from 2.6 to 4.8 and a reac-

tance varying from 0.8 to 3.0. Thus a quite large change in

the impedance has only little effect on the acoustic field, as

the liner tends to behave as a rigid wall.

Please note that the NASA educed value located on fig-

ure 7 is only shown for information. It appears less close to

the minimum since it has been educed with a code different

from the DG code used to draw the objective function. The

same plot done with the NASA code would show the NASA

educed value at the minimum.

5 Numerical investigation on a velocity-
based objective function

In further developments, the eduction method is planned

to be used with acoustic velocity measurements obtained by

LDV. Before testing the process with real measurements, the

feasability of impedance eduction relying on an objective
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Figure 5: Liner impedance educed from upper wall pressure

measurements on the NASA GIT
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Figure 6: Exit impedance educed from upper wall pressure

measurements on the NASA GIT for the “EIp” case.
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Figure 7: Objective function based on the acoustic pressure,

represented at 2 kHz in the impedance plane (r, χ). The exit

impedance and calibration coefficient are fixed to their

educed values. Symbols locate the educed impedances.

function expressed in terms of acoustic velocity must be es-

tablished.

A numerical experimentation has been made, in which

the configuration is the same as in section 4. Propagation

simulations are performed, with the NASA impedances as

input of the DG code, providing acoustic velocity fields on

the whole domain. These calculated fields will be consid-

ered here as the experimental results. The eduction process

applied to these synthesized data should of course lead to the

input impedance values. The observation region is chosen to

match the typical area covered by LDV, and is represented on

figure 8. It consists in a 20 mm-height rectangular area above

the liner. It offers the advantage to be two-dimensional and

to be very close to the liner, where the absorption effects are

the most visible. This case will be denoted “EIv” case.

x1

x2

O
Hard wall Liner Hard wall

Hard wall

Ωobs

Figure 8: Observation region for the “EIv” case

The objective function in terms of velocity reads:

J(ϕ, z,C) =

∫
Ω

‖umeas − ucalc‖2 IΩobs (x) (18)

Eduction results are presented on figure 9 and figure 10

for the liner and exit impedance, respectively. As expected,

the educed values perfectly match the input impedances, which

confirms that eduction with a velocity-based objective func-

tion is possible. Of course the synthesized velocity does

not suffer from measurement noise and a sensitivity study

to added noise still has to be carried out.
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Figure 9: Liner impedance educed from simulated velocity

(“EIv” case) on the NASA GIT.
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Figure 10: Exit impedance educed from simulated velocity

(“EIv” case) on the NASA GIT.

6 Concluding remarks
A new method for liner impedance eduction has been pre-

sented, with the specificity of involving the adjoint system
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to calculate the objective function derivatives. This allows

to obtain an analytical expression for the gradient, and to

include easily a number of parameters other than the liner

impedance, at a computational cost which remains unchanged.

The method has been tested and validated against NASA

results available in the literature. Only few results are pre-

sented in this paper for the sake of brevity, but they show

very good agreement with the reference plots. The possible

use of an objective function expressed in terms of acoustic

velocity has been checked. It will allow the development

of an eduction process based on LDV measurements, which

give access to information very close to the liner.

A number of studies are currently being carried out, in-

cluding a sensitivity study of the impedance educed values

to the measurement noise generated by the instrumental sys-

tem and the signal processing. LDV measurements with and

without flow on microperforated liners have been performed

and are under consideration at the moment. Finally, it could

be interesting to consider the optimal control problem asso-

ciated to our configuration to obtain an adjoint field giving

indication on the best possible observation region.
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