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The prediction of structure-borne sound and vibration in an assembly of two structures needs the prediction of 
the forces applied by the source structure on the host or receiver structure. Often, the source structure excites the 
receiver through an intermediary structure. Two ways are possible to describe three structures in series: by 
creating a new receiver as the assembly of the intermediary and receiver structures or by creating a new source 
as the assembly of intermediary and source structures. In the present paper, two methods used to calculate forces 
entering the host structure are presented. Results in an industrial case show that the prediction of forces for three 
structures in series is better when based on inertance measurements of certain coupled structures rather than of 
isolated structures. In order to understand which degrees of freedom are linked in the previous case, a numerical 
bench is developed. The first step of validation concerns the coupling of two beams.   

1 Introduction 
In a lot of engineering situations, a source structure 

excites a host or receiver structure through an intermediary 
structure. To understand how the receiver structure will 
radiate, forces entering the host structure have to be 
evaluated. When the host structure is known only by its 
specifications, the assembly of the three structures is not 
possible: forces can be predicted from measurements on a 
test bench. 

To describe three structures in series, two approaches 
are possible: the first one consists in creating a new receiver 
as the assembly of the intermediary and the receiver 
structures and the second one consists in creating a new 
source as the assembly of the source structure and the 
intermediary one. In this paper, we consider that no 
physical couplings are possible between the intermediary 
and the receiver structures as well as between the source 
and the intermediary ones. However, two different methods 
are presented: in the first one, called standard method, the 
characteristics of a new receiver are found from 
measurements of isolated structures and in the second one, 
called alternative approach, the characteristics of a new 
source are found from measurements of isolated structures 
and two coupled structures : the intermediary and the bench 
structures. Experimental results are presented for these two 
methods in the case of a fan system in a car. These results 
are based on work presented in [1]. 

The second part deals with a numerical bench: the aim 
of this bench will be to validate in an academic case the 
results obtained with the previous two methods in a 
complex case. As a first step, this numerical bench is 
validated for two coupled beams in the present paper. The 
results presented here are based on work in [2]. 

2 Recall of two methods to couple 
three structures in series 

2.1 Nomenclature and generic 
configuration 

The generic configuration is given in Figure 1. We 
consider a source structure ΩA coupled to a virtual host 
structure ΩC through an intermediary structure ΩF. The 
source is submitted to an excitation while the two others are 
passive.  The links between these three structures can be 
elastic and/or rigid [3]: the links between ΩA and ΩF, 
respectively between ΩF and ΩC, constitute a structure 

named ΩK’, respectively ΩK. The objective is to predict C
af , 

the forces entering the host structure ΩC, from 

measurements of forces B
af measured on a rigid bench ΩB

(Figure 1 (b)).  
If we consider a structure ΩH, connections with other 

structures will occur at some points on the boundary 
differentiated by the letters a and b, the former are called 
input points, the latter output points. In all figures, the 
measured parameters as inertance matrices or force vectors 
are drawn with solid lines while calculated parameters are 
drawn with dashed lines.  

Figure 1: Generic configuration and standard coupling of 
three structures in series (a) and measurement on a test 

bench (b). 

2.2 Standard coupling of three structures 
The procedure presented in this paragraph is standard as 

all the measured inertance (acceleration/force)  matrices 
concern isolated structures.  

If we consider ΩF ∪ ΩK ∪ ΩC as a new host structure, 
the forces FKC

af entering this new host can be predicted 

from forces measured on the rigid bench by [1]: 
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where A
bY is the measured inertance matrix of ΩA, FKC

aY is 

the calculated inertance matrix of ΩF ∪ ΩK∪ ΩC (Fig. 1) 
and 'K represents the stiffness matrix of the links ΩK’. All 
the stiffness matrices are given for the application. 

The inertance matrix FKC
aY of ΩF ∪ ΩK∪ ΩC can be 

obtained from isolated structures matrices by: 

      ( )( ) ,
11

121 F
ba

F
b

C
a

F
ba

F
ab

F
a

FKC
a YYKYYIYYY

−−
−−

−+−= ω     (2) 

ΩA ΩF ΩC

imposed 
forces 

C
af

ΩA ΩB

B
af

K’ 

K’ 

K 

(a) 

(b) 

FKC
af

inertance FKC
aY

transmissibility
FK

baT

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

3456



x y 

z 

where F
baiiY ),( = are measured submatrices of the inertance 

matrix of ΩF, and K represents the stiffness matrix of the 
links ΩK. 

Then, it is possible to predict C
af from FKC

af by:  

,FKC
a

FK
ba

C
a fTf =                               (3) 

where FK
baT is a transmissibility matrix given by: 

( ) .
112 F

ba
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a
F

b
FK

ba YKYYT
−−−+= ω                   (4) 

2.3 Alternative method for coupling three 
structures in series 

The procedure presented in this paragraph is called 
alternative method as one of the inertance matrices
measured concerns two coupled structures: the intermediary 
and the bench structures.    

Figure 2: Steps of calculation for the alternative 
approach. 

As for the previous method, the first step consists in 

measuring forces B
af on a rigid bench ΩB (Fig. 2(a)). Then, 

as a second step, if we consider ΩA ∪ ΩK’∪ ΩF as a new 

source, it is possible to deduce forces B
af
~

(Fig. 2(b)) 

entering the test bench from B
af by: 
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where FK
baT  is the transmissibility matrix measured in 

presence of bench B
~

Ω  and BFK
aY

~
is the measured inertance 

matrix of structure ΩF ∪ ΩK∪ B
~

Ω . The last step consists in 

predicting forces C
af  from B

af
~

by: 
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where the inertance matrix AFK
aY '  is deduced from 

measured inertance matrices by: 
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3 Application to a fan system and 
experimental results 

3.1 Industrial configuration and 
measurements 

The two methods are applied in the following industrial 
case: we consider an engine cooling fan system (EFCS) 
installed on the chassis of a car (Fig. 3(a)). Source structure 
ΩA is the fan system (Fig. 3(b)) while the intermediary 
structure is the plate on which it is attached (Fig. 3(c)).  The 
vibratory source is a residual unbalance. 

The four attachment points between the fan and the 
plate are elastic while the four attachment points between 
the plate and the chassis are rigid at the top and elastic at 
the bottom. Names of attachment points are shown on 
Fig.3(c) and listed below: BL and BR refer to bottom left 
and bottom right attach points and TL and TR refer to top 
left and top right attach point. The frame of reference is the 
one used in a car and shown on Fig.3. To each attachement 
point correspond three components of the force vector. 

Figure 3: EFCS installed on the chassis of a car (a), 
fan system (b), plate (c) 

The objective consists in predicting the forces entering 
the chassis (host structure ΩC) at the plate/chassis interface 
points from the forces measured on the rigid bench at the 
fan/plate interface points. To validate the methods, forces 
entering the chassis are also measured directly.  

Forces on the bench and on the chassis are measured by 
a direct method using force sensors. Terms of inertance and 
transmissibility matrices are measured using accelerometers 
and an impact hammer.  
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3.2 Experimental results 

Figure 4 shows six of the twelve predicted and 
measured forces entering the chassis. Predictions are 
obtained with the standard and the alternative methods.
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Figure 4: Comparison between predicted and 
measured forces for three structures in series (--- measured 

C
af , . . . predicted C

af with the standard method, �

predicted C
af with the alternative method).  

On one hand, for the standard method, prediction is 
poor for BLz, TLx, TLz, TRz, and acceptable for TRy 
between 15 and 45Hz and for TLy. On the other hand, for 
the alternative method, prediction is acceptable for BLz, 
TLx, TLz, TRz, good on some frequency bands (TLx, TLy) 
or very good (TLz). In all cases, results obtained with the 
alternative method are better than with the standard method. 

Using the measured coupling inertance matrix BFK
aY

~
and 

the measured coupling transmissibility matrix FK
baT seems 

to improve the prediction. In theory, results obtained with 
both methods should be the same. However, it is likely that 
the use of matrices measured for coupled structures gives 
more information about coupled degrees of freedom than 
the use of inertance matrices of isolated structures. This 
result agrees with results found for an academic case in [4]. 
Moments and shear forces may act on coupled structures 
which is not the case on isolated structures [5].  

4 Development of a numerical bench 

In order to understand which degrees of freedom allow 
the prediction to be better with the alternative approach, a 
numerical bench is being developed for academic cases.  

This section presents the method developed for the 
numerical bench for two coupled Euler-Bernoulli beams  
[2].  

4.1 Configuration under study 
Figure 5 presents the case under study: we consider a 

beam A (source beam) attached to a beam C (the host) by 
one elastic (at y = yl) and one rigid (at y = yr) links. The 
excitation on the beam A is a force applied at ys=0.63m. 
The objective is to predict forces entering the beam C, from 
forces entering a beam B (the test bench) at connection 
points. 

Figure 5: Description of the configurations. 

Density and Young modulus for the three beams are: 
ρA = 7800 kg.m-3, ρB = 2700 kg.m-3, ρC = 7200 kg.m-3,  
E A = 2.1011(1+0.05i) Pa, E B = 0.9.1011(1+0.05i) Pa,  
E C = 0.7.1011(1+0.05i) Pa. The rigid link is described by a 
very high stiffness kr = 10.1010 N.m-1 while the elastic link 
is kl = 1000 N.m-1. Widths of the beams are: lA = 2cm, lB = 
8cm and lC = 5cm. Thicknesses of the beams are: tA = 2cm, 
tB = 20cm and tC = 5cm The bending coefficient Di is 

defined as 12/3
iii tED =  for the structure i.  

4.2 Method 
The basis of the method can be found in [6]. It uses a 

variational formulation combined with a finite element 
method. 

In this paragraph, the method used to obtain 
displacements at connection points is described for the 
coupling of beams A and B. The same method can be used 
for the coupling of beams A and C.  

Displacement Aζ and Bζ of beams A and B verify the 

following differential equations system: 
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where iγ is the bending wave number of the beam i. 

The variational formulation of these two equations can be 
written:  
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with Aδζ , resp. Bδζ , the virtual variation of Aζ , resp. Bζ . 

Previous equations are discretized and the interpolation 
functions given in [6] are used to solve the problem. Then 
Eq. (9) is written in a matrix form: 

                           


�
�

	


�

=


�
�

	


�
�
�

�
�
�

�
0

A

B

A f

u

u

BE

FA
,                           (10) 

where 

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

+−=

0000

0

00

0

00

0000

4

��

����

���

��

����

��

AA

l

AA

r

AAA

Dl

k

Dl

k

MKA γ
            , 

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

−

−
=

0000

00

00

0000

��

����

���

��

����

��

BB

r

BB

l

Dl

k

Dl

k

E
                 . 

Matrices B and F can be written the same way. Matrix 

AK is the stiffness matrix of beam A while matrix AM is 

the mass matrix of beam A. Their expressions can be found 
in [6]. 
Terms of vectors Au and Bu are displacements and rotations 

at nodes and vector Af is the force vector. 

Terms of vectors Bu can be found by solving Eq. (10): 

           ( ) AB fEABFEAu 111 −−− −=     .           (11) 

Displacements )( lB yζ  and )( rB yζ  at the two connection 

points can be extracted from vector Bu . Then forces )( lB yf

and )( rB yf entering the beam B at connection points can 

be calculated. 

4.3 Validation 

Recall of the modal method 
Results obtained with the finite element method are 

compared with results obtained by a modal method 
described in this paragraph. 

We consider two beams S1 and S2 coupled by one 
elastic and one rigid connections; a force f0 is applied on 
beam S1 (Fig. 6). Displacements 1ζ and 2ζ at connection 

points 1 and 2 can be written 
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is the receptance and nΨ is the nth eigenmode of the beam. 

Figure 6: Beams connected by elastic and rigid links 

In a matrix form, Eq.(12) is: 
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In the same way, displacements 3ζ and 4ζ at connection 

points 3 and 4 on beam S2 can be written: 



�
�

	


�

=


�
�

	


�

4

4

3

3
34 ζζ

ff
T where .

1

)2(
34

)2(
44

)2(
34

)2(
44

)2(
33)2(

43

)2(
34

)1(
44

)2(
33

34

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

−
=

α
α

α
αα

α

αα
α

T  (14) 

At elastic and rigid links, displacement and forces are 
linked by: 
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are respectively the transfer matrices between points 1 and 
3 and between points 2 and 4. 
Then, it is possible to find the displacement and the force at 
point 1 with: 
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Displacements and forces at other points are deduced using 
Eq. (14) and Eq. (15). 

Results for free acceleration 
Results are presented on Figure 7 for the free 

acceleration of beam A at rigid and elastic points. Free 
acceleration fa of beam A can be calculated from forces 

entering beams B and C by: 

( ) ,12 BBA
fB fYYKa ++−= −ω

( ) ,12 CCA
fC fYYKa ++−= −ω

where AY , BY and CY are inertance matrices of beams A, 

B and C at connection points. 
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Figure 7: Real part of free acceleration of beam A 
calculated directly (a), calculated from the coupling on 

bench B (b), calculated from the coupling on host C (c) (�
modal method,        EF method) 

Firstly, the EF method is validated as it gives exactly 
the same results as the modal method. Secondly, whichever 
method is used (direct method or via a host structure), 
results for free acceleration are similar. These results 
confirm that the method of prediction of forces on a host 
structure from measurement of forces on another structure 
give the same exact results in theory.  

5 Conclusion 
In the industrial studied case, two methods to predict 

forces at connection points between two structures have 
been shown: the first one uses only parameters measured 
for isolated structures while the second one uses some 
parameters of coupled structures. The prediction is better 
with the second method. More information on coupled 

degrees of freedom seems to be given by coupled structures 
than isolated ones.  

In order to understand why the second method gives 
better result a numerical bench has been developed. The 
case of two beams coupled by one rigid and one elastic 
connection points has been studied. The numerical bench 
has been validated with a comparison of the results 
obtained by a modal method. Moreover, results showed that 
in theory, the prediction of forces on the host structure 
should be exactly the same as the measurements on the host 
structure. 

The next step is now to use the numerical bench with 
three structures coupling in series in order to understand 
which coupled degrees of freedom allow to obtain better 
results in the prediction. 
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