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The problem of finding the properties of the acoustic modes present in a duct with flow and a lined wall, has a great
relevance in noise reduction, specially for the aeronautical industry. In this paper, the case of an infinite rectangular
duct with one lined wall and three rigid walls is considered with a uniform or shear flow. The optimal impedance of
the lined wall, as defined by Cremer and Tester is investigated, as well as the behaviour of the concerned modes
around this impedance value in terms of their group velocity.

1 Introduction
Reducing the noise radiated by aircraft turbines and air

conditioning system is an issue of primary practical impor-
tance. A first step relies on a good understanding of the
behaviour of acoustic modes inside lined ducts. A study about
the optimal impedance of a lined wall in a infinite rectangular
duct is presented, the cases without and with flow are taken
into account, with a special emphasis on the group velocity
of the concerned modes.

In this study, the optimal impedance is defined as Cremer
[8] did for the case without flow. He states that the optimal
impedance is obtained when the “least attenuated” pair of
modes achieves a maximum attenuation; Tester [14] refined
the definition to the “most propagative” pair of modes and
corrected the value; he also generalised Cremer’s relation for
the optimal impedance in order to include a uniform flow, and
to account for any pair of modes. The characteristic spectrum
of the optimal impedance is such that two modes coincide
completely. Betgen [2] has already made a numerical study
without flow and with a uniform flow.

Present work aims at generalizing the previous relations
by considering a shear mean flow.

Moreover the group velocity is analyzed especially for an
impedance close to the optimal one, where there is a branch
point in the spectrum.

The results of this work can be applied in the field of
active control of impedance, [3, 4] on which the physical
characteristics of the absorbing material are “tuned” to follow
an optimal law of impedance so that noise is attenuated over
a large frequency range rather than only around the resonance
frequency of the passive liner.

Experimental set-up
This study is linked with the experiments carried out in

the wind tunnel B2A (Aero-thermo-Acoustic Bench) of the
DMAE (Models for Aerodynamics and Energetics Depart-
ment) at ONERA. The main characteristics of this set-up are
as follows:

Wind speed up to 0.4 Mach
Frequency 300 - 3500 Hz
Sound pressure level up to 140 dB
Temperature up to 300◦C
Dimensions of testing cell 150 × 50 × 50 mm

Nomenclature
The following notations will be used:

q̃ dimensional quantity,
q non-dimensional quantity,
Q0 non-dimensional mean value,
q′ non-dimensional fluctuation quantity,
q̂ space dependent perturbation amplitude.

2 Problem statement

2.1 Geometry
The coordinate system is shown in figure 1. The mean

flow is aligned with the x direction, y is normal to the lined
wall, located in the lower part, and z is transversal to the
flow, parallel to the lined wall. Present approach deals with

flow
acoustic field

liner

Figure 1: Geometry with dimensions.

two different cases. In the first one, the mean flow velocity
depends on y only and is purely one-dimensional. In the
second one, the lateral walls are taken into account and the
mean flow velocity may depend on y and z. The former case
will be called “1D case” and the later “transversal case”.

2.2 Non-dimensionalization
The different variables are made dimensionless with the

speed of sound c0, the half height of the duct H and the mean
density of the fluid ρ0:

x =
x̃
H
, y =

ỹ
H
, z =

z̃
H

u =
ũ
c0
, v =

ṽ
c0
, w =

w̃
c0

p =
p̃

ρ0c0
2 ; t = t̃ ·

c0

H
; ρ =

ρ̃

ρ0

The half width of the duct is denoted as L, and the aspect ratio
A is defined as the non-dimensional width: A = L

H .
The usual driving conditions of the B2A wind tunnel are

given by:

H = L = 0.025m , c0 = 340m/s , ρ0 = 1.21kg/m3

leading to the aspect ratioA = 1.

2.3 Governing equations
In this paper, viscosity is not taken into account; the prop-

agation model relies then on the Euler equations:

p = c0
2ρ Equation of state

∂ρ
∂t + ∇ · (ρu) = 0 Continuity equation

ρ
∂u
∂t + ρ(u · ∇)u = −∇p Momentum equation

 (1)

The problem is solved by linearizing the equations using
the small perturbation technique, for which the physical quan-
tities are assumed to have the shape of small perturbations
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superimposed to a mean value:

q = Q0 + q′

The mean velocity profile may depend on y and z, the mean
pressure depends on x only, and the mean density is constant:

U0 = U(y, z) , P0 = P0(x) , ρ0 = constant

The fluctuation term is written as a normal mode:

q′ = q̂(y, z) · ei(ω·t−α·x) (2)

where ω is the angular frequency and α is a complex axial
wavenumber.

After linearization, system (1) reads:


iω Uy Uz 0
0 iω 0 Dy

0 0 iω Dz

0 Dy Dz iω

 − α


iU 0 0 i
0 iU 0 0
0 0 iU 0
i 0 0 iU





u′

v′

w′

p′

 = 0

(3)
with Dy and Dz the derivative operator with respect to y and z,
and Uy and Uz the y and z derivatives of the mean velocity U.
System (3) corresponds to a generalized eigenvalue problem
for the spatial analysis, with α the complex eigenvalue and ω
a real number, acting as a parameter.

The real part of α, αr is the wavenumber, and its imaginary
part αi is the spatial growth rate. The phase velocity is defined
as vϕ = ω/αr. Usually, modes with a positive phase speed and
negative αi are damped right-running modes. However, the
only mathematically-funded way to define whether a mode
is damped or amplified is to apply the Briggs-Bers criterion
[7, 1, 10, 5].

2.4 Mean flow profile and boundary conditions
The specific impedance is defined as : Z =

p
v·n and is

assumed to be independent of ω.
The boundary conditions read:

Zωv′(−1, z) = (αU(−1, z) − ω)p′(−1, z)
v′(1, z) = 0 (4)

w′ (y,−A) = 0
w′ (y,A) = 0

The boundary condition on the lined wall y = −1 is the
classical Myers boundary condition [11] which has been
used in many similar studies [14, 12] where the mean flow
is assumed to be uniform. It has recently been proved that
this boundary condition leads to an ill-posed problem [5].
Improvements on this boundary condition have been made to
overcome this ill-posedness, while recovering more physical
aspects [6, 13]. However, in this paper the Myers boundary
condition is used as a reference in order to validate the code.

A no-slip shear flow profile is also investigated. In this
case, the Myers boundary condition is equivalent to the classi-
cal impedance conditionZv′(−1, z) = −p′(−1, z) .

For solving the eigenvalue problem made of the non-
dimensional linearized Euler equations (3) with the boundary
conditions (4), a code has been developped, which uses a
spectral collocation method for spatial discretization.

3 Validation
With hard walls or without mean flow, the eigenmode

analysis has easy analytical solutions, which are used for
benchmarking the numerical code.

3.1 Uniform flow, hard wall
For the case with a “plug” (uniform) flow and hard wall,

the pressure fluctuation reads:

p̂(y, z) = p0ei(βny+ϕn)ei(γmz+ψm) (5)

with:

βn = n
π

2
, ϕn = (n + 1)

π

2
, γm = m

π

2A
, ψm = (m + 1)

π

2A

with n and m integer numbers. The axial wavenumber reads:

αn,m =
ωU ±

√
ω2 − (1 − U2) ·

(
β2

n + γ2
m
)

U2 − 1
(6)

Cases without mean flow are obtained when U = 0.
For the unidimensional cases presented here, m is fixed to

zero. The eigenvalues α which are real numbers correspond
to cut-on modes; given the dimensions and frequency range
of the B2A wind tunnel, there can only be one cut-on mode,
the plane wave.

With uniform mean flow profile and rigid walls, the spectra
calculated with our program perfectly agree with the analyti-
cal results.

3.2 No mean flow, lined wall
Cases with a finite impedance for the lined bottom wall

lead to the same shape for p′ and α as in (5) and (6), but the
wavenumber along the y direction β is obtained from the set
of solutions of the equation:

2β tan(2β) = 2i
ω

Z
(7)

which are calculated with a shooting method. When the so-
lution of this shooting method is compared with the spectra
resulting from the eigenmode analysis code, a very good
agreement is obtained, as shown in figure 2 for an impedance
Z = 1.5 + i · 1.5 and a frequency ω = 0.924.

More precisely, all modes are perfectly superimposed to
the theoretical ones, except for numerical modes with eigen-
values (αr, αi) = (−ω, 0), (ω, 0) and (0, 0), which are numeri-
cal artefacts.

The numbers indicated in figure 2, correspond to the n
index in case of hard wall, see (6).

4 Optimal impedance
A shooting method has been used to follow the behaviour

of modes when one parameter changes. Here the varying
parameter is the impedance.

4.1 Optimal impedance for a fixed frequency
For different values of the resistance R (real part of Z),

when the reactance X (imaginary part ofZ) is changed from
high positive values to high negative values. Without flow, the
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Figure 2: Comparison of the theorical eigenvalues obtained
from (7), represented by green crosses (+) with those

obtained with the eigenmode analysis, shown in yellow
circles (◦).
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Figure 3: Spectrum for different values of resistance and
changing reactance. ω = 0.924, U = 0.

spectrum is symmetric about its origin, and the eigenvalues α
evolve in the complex plane following trajectories depicted in
figure 3, and summarized as follows:

• For R = 1.25, shown in continuous black line (——), it
is found that every eigenvalue makes a small turn and
returns to its hard wall value.

• For R = 0.55, depicted in long-dashed red line (– – –),
the eigenvalue trajectory of mode 0, reaches the eigen-
value trajectory of mode 1, leading to a coincidence
for a specific value of the reactance, for which the two
modes become indistinguishable.

• For R = 0.35, represented with a short-dashed blue line
(- - - -), the eigenvalues of modes 0 and 1, exchange
their position without trajectories crossing.

α0(X = −∞) = α1(X = +∞)
α1(X = −∞) = α0(X = +∞)

• Finally, for R = 0.25, shown with alternating one long
and two short green dashes (— - -), it occurs a circular
permutation between the first three modes (0,1 and 2):

α0(X = −∞) = α2(X = +∞)
α1(X = −∞) = α0(X = +∞)
α2(X = −∞) = α1(X = +∞)

When the value of the resistance is further decreased, it
can be observed an alternance between crossing and exchange
of positions involving an increasing number of modes.

The “optimal impedance” as stated by Cremer and Tester,
is the particular value at which the first two modes coincide;
it is called the double point. This corresponds to the maximal
attenuation for the least damped mode, as predicted by Cremer.
Indeed, it is shown in figure 4 that for other resistance values
there is always one mode which is less damped than the
optimal value.
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(a) (b)

Figure 4: Spectra for different resistances showing the
positions of the first two modes for some values of reactance

(-0.42 in yellow full circles • and -0.90 in brown empty
triangles 4). The dashed gray line (– – –) indicates αi for the
double point. (a) (- - - -) R = 0.35 and (b) (— - -) R = 0.25.

For the frequency ω = 0.924 used here, there is only
one cut-on mode in the hard duct case, thus the coincidence
appears between this mode and the first cut-off one. For higher
frequencies, it can happen that the coincident modes are both
cut-on.

With a flow, the overall behaviour is similar as without
flow, but the impedance values at which the coincidences
occur are different for right and left running modes.

4.2 Optimal impedance vs frequency
The value of the impedance at the double point has been

sought without flow, with a “plug” flow and with a shear mean
flow.

The optimal impedance has been obtained by trial and
error, for different frequencies and flow profiles, taking as a
starting point the values proposed by Cremer [8]:

ZC
opt(ω) = (0.91 − 0.76i)

2ω
π

(8)

and Tester [14]:

ZT
opt(ω) = (0.929 − 0.744i)

2ω
π(1 + U)2 (9)

where the factor 2 arises from our choice of the half-height of
the duct as reference length.
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In figure 5 the frequency evolution of optimal resistance
and reactance without flow are shown and compared to Cre-
mer’s values. A good agreement is obtained. The slight
differences in the resistance are due to an inaccuracy in Cre-
mer’s formula, corrected by Tester; taking the corrected value,
these differences disappear.
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Figure 5: Optimal specific resistance (a) and reactance (b) for
different values of the frequency. Case without flow (�),
compared to Cremer values (- - - -), the case previously

studied is distinguished by a black circle (◦). Dimensional
frequencies correspond to the B2A set-up.

Figure 6 shows the same kind of plot for a uniform flow
and a Poiseuille shear flow, now compared to Tester’s formula.
The bulk Mach number is the same in both cases. The same
trends as Tester’s formula are obtained, but with some slight
differences, especially in the low frequency range, some differ-
ences with the formula have been observed before[2]. Results
with a shear flow profile are very close to those obtained with
a uniform flow.
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Figure 6: Optimal resistance (a) and reactance (b) for
different values of the frequency. Cases with uniform (�) and

shear flow (�) , compared to Tester values (- - - -).
Mach = 0.1. Dimensional frequencies correspond to the B2A

set-up.

5 Group velocity
The study of the group velocity for the modes involved

in the double point is now presented. The group velocity is

defined as the derivative of the frequency with respect to the
wavenumber:

vgr =
∂ω

∂α
(10)

Without absorption, it is a real number which represents the
velocity of energy propagation. For the cases with absorption,
as those presented here, it is a complex number whose real part
is associated in particular cases with the energy propagation
and its imaginary part with the absorption of energy [9].

This is only a preliminar study; to understand the stability
properties of the modes, the Briggs-Bers criterion will have
to be implemented.

5.1 Reactance changes
The evolution of the group velocity with changes in impedance

is investigated close to the double point. The resistance is
fixed and the impedance is swept around the optimal value.

Without mean flow, figure 7 shows the group velocity of
modes 0 and 1 for resistances equal to 1.25 and 0.75. Both
cases are far from the double point. Labels ’0’ and ’1’ corre-
spond to their hard-wall classification for negative reactance
values. The asterisk ’*’ indicates the value of optimal reac-
tance. It can be seen that group velocities for both modes
are always positive. As the resistance is decreased, the group
velocity of mode 0 starts to rise close to the optimal reactance.
At a certain value it becomes infinite and reappears negative.
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Figure 7: Group velocity vs reactance for the two modes
whose eigenvalues coincide without mean flow; resistance is
fixed at a value much larger than the optimal one. ω = 0.924.

(a) R = 1.25 (b) R = 0.75.

The group velocities for resistances close to the optimal
one are shown in figure 8 without mean flow, and in figure
9 with a shear mean flow with bulk Mach number of 0.1.
When the resistance is slightly lower than the optimal one
(subfigures (b)), there is a change in branch at the optimal
reactance, which does not exist when the resistance is slightly
higher than the optimal one (subfigures (a)).

It must be noticed that close to the optimal impedance
value, a pitch on the group velocity can be observed: the group
velocity of both modes approach zero, one being negative and
the other positive. The negative values of vgr do not implicate
it is a left running mode: its propagation direction can only
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Figure 8: Group velocity vs reactance for the two modes
whose eigenvalues coincide without mean flow; resistance

slightly above and below the optimal one. ω = 0.924.
(a) R = Ropt + 0.0001 (b) R = Ropt − 0.0001.
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Figure 9: Group velocity vs reactance for the two modes
whose eigenvalues coincide with a shear mean flow M = 0.1;

resistance slightly above and below the optimal one.
ω = 0.924. (a) R = Ropt + 0.0001 (b) R = Ropt − 0.0001.

be obtained through the Briggs-Bers criterion. The negative
or divergent values for the group velocity were not expected.

With a shear mean flow, the optimal impedance is shifted
but the mode behaviour is globally the same as without flow.

6 Conclusion
It has been found a semi-empirical shape for the optimal

impedance at which the double point takes place. A study
with an uniform flow and with a shear flow profile has been
performed. The obtained results lie close to those predicted by
Tester, with slight differences especially at low frequencies.

When analyzing the group velocity of the concerned modes,
one can see an exchange of behaviour between them for re-
sistance values slightly larger than the optimal one. It is also
clear that when the impedance approaches the optimal value,

the group velocity tends to zero.
Other noticeable thing is the fact that, for some values of

impedance, not far from the optimal one, divergent or negative
values of the group velocity are obtained. In further study, the
Briggs-Bers criterion will be implemented to investigate this
point.
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