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Ducted cavities are typical configurations in pipe systems. They generate discrete tones which can be amplified by

the coupling with the acoustic modes of the duct. This configuration has been numerically studied using high-order

schemes and the physical phenomena have been retrieved. This paper presents a new step of this work in which

different techniques for meshing the cavity are compared. The main goal is to validate approaches which are less

restrictive for meshing industrial configurations.

1 Introduction
Ducted cavities are typical configurations in pipe systems

with flow control devices such as valves. They generate dis-

crete tones which can be amplified by the coupling with the

acoustic modes of the duct. Like classical open cavities,

ducted cavities underly a feedback mechanism that can be

described as follows: vortical structures develop in the shear

layer above the cavity and are convected downstream. The

impact of the eddies on the downstream corner lead to pres-

sure perturbations that trigger further instabilities at the up-

stream cavity corner giving a phase locking of the whole sys-

tem, known as the Rossiter modes [1]. Additionally, in the

ducted case, acoustic modes of the duct can also be excited.

In the past, many experimental and numerical investigations

about open cavities were done, especially for predicting res-

onance frequencies and pressure levels [2, 3].

The configuration considered here has been analysed in

the context of an industrial application. It has been first stud-

ied in 2-D by using a second-order TVD-Euler code [4].

Rossiter frequencies were recovered and a cavity modifica-

tion has been studied by introducing a chamfer at the up-

stream corner of the cavity which led to a reduction of the

phenomena [5]. But turbulent aspects could not be consid-

ered due to the inviscid 2-D feature of the simulations. Then

Navier-Stokes computations have been carried out on the same

planar configuration but in 3-D. These computations have

been performed using high-order methods and have retrieved

more flow details [6]. This approach is continued in the

present work but focusing on the meshing treatment of the

cavity.

The computational algorithm involving low-dissipative and

low-dispersive numerical methods is presented in the first

section. In the second section, the studied configuration is

presented with emphasis on experimental results and phys-

ical mechanisms. In the third section, the results obtained

with two different grid treatments of the cavity are presented

and analysed in order to characterize the different approaches

able to deal with complex geometries.

2 Numerical algorithm
The set of equations are the compressible 3-D Navier-

Stokes equations, written in conservative form after applica-

tion of a general time-invariant curvilinear coordinates trans-

formation from physical space to computational space. This

transformation (x, y, z) → (ξ, η, ζ) yields to a new expres-

sion for the Navier-Stokes equations:

∂

∂t

(Q
J

)
+
∂E
∂ξ
+
∂F
∂η
+
∂G
∂ζ
= 0,

where J is the Jacobian of the geometric transformation.

The unknown vector writes Q = (ρ, ρu, ρv, ρw, ρet)
T , where

ρ designates the density, u, v,w the Cartesian velocity com-

ponents and ρet the total energy. The latter is calculated for

a perfect gas such as ρet = p/(γ − 1)+ 1
2
ρ(u2 + v2 +w2) with

p the pressure. The flux vectors E, F, G contain the inviscid

and the viscous terms. Their expressions as well as the met-

ric identities for the grid transformation can be found in the

literature [7, 8].

For interior points of the computational domain, the fluxes

and the velocity derivatives for the viscous terms are dis-

cretized by standart 7-points or optimized 11-points centered

finite difference schemes [9]. An explicit fourth-order low-

storage Runge-Kutta scheme advances the solution in time.

The CFL number is 0.9 and the time step Δt is updated every

iteration during the transient phase. Appropriate 7-points or

11-points explicit low pass filters remove grid-to-grid oscilla-

tions, not resolved by centered finite difference schemes [9].

At the same time, the filters properly remove non-resolved

turbulent structures and so act like a subgrid scale model.

This method referred as LES-RF has been successfully ap-

plied in the literature [10, 11].

The finite difference schemes are limited to structured

grids. In order to treat more complex geometries, a high-

order overset capability has been implemented in the code.

In this approach, the computational domain is subdivided

into overlapping structured component grids. The govern-

ing equations are solved on each component grid separately

and the communication between grids is achieved through

interpolations. Also known as the Chimera grid method, this

approach has been proposed first for aerodynamics [12] and

extended later for aeroacoustic simulations [13]. For grid

generation Ogen, the grid assembler module of the freely

available library Overture [14] developed at the Lawrence

Livermore National Laboratory, has been interfaced with the

solver. For communication between grid boundaries that do

not coincide, high-order interpolation is used. Lagrangian

polynomials has been found to be best suited in terms of pre-

cision, execution time and implementation aspects for the

high-order overset grid approach [15]. Various tests have

shown that at least eighth-order polynomials have to be used

in order to make the interpolation error negligible when us-

ing the 11-points scheme and fourth-order polynomials when

using the 7-points scheme.

The standard Message Passing Interface (MPI) library

routines have been used for code parallelization and, for load

balancing purpose, each component grid is subdivided evenly

N times in each direction and can be computed by Nprocs =

Nξ,procs × Nη,procs × Nζ,procs..

All the aforementioned characteristics have been imple-

mented in a numerical solver of the Navier-Stokes equations,

called Code Safari (Simulation of Aeroacoustic Flows And

Resonance and Interaction). Details can be found in [16].

3 The case of the ducted cavity
Ducted cavities have been first studied for an industrial

application: a whisthling phenomenon was observed on the

power steam line of a nuclear power station [4]. A cavity
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located in a gate valve was identified as the source of this

pure tone.

It is well known that a flow past a cavity gives rise to

noise radiation. A complex feedback process between the

upstream and downstream corners produces coherent oscil-

lations in the shear layer developing above the cavity [17,

18, 19]. For cavities in open space, the oscillations remain

weak at low Mach numbers. Therefore most published pa-

pers are related to Mach number range in the high subsonic

domain. For ducted cavities (see Figure 1), the possible cou-

pling between hydrodynamic cavity oscillations modes and

duct acoustic modes can lead to high amplitude oscillations

even at low speeds. Cavity modes are given by Rossiter’s

formula [1]:

S tR =
f d
U0

=
nR − ξ

M0 + U0/Uc
,

where ξ = 0.25, U0/Uc = 0.57, and nR is the mode number.

The transverse modes of the duct are given by

S td = fd
d

U0

=
nd c
2H

d
U0

,

where nd is the duct mode number associated to the fre-

quency fd.

Figure 1: Hydrodynamic modes and acoustic modes in the

ducted cavity configuration.

The real geometry of the industrial valve is quite com-

plex and a simplified plane geometry was retained in order

to study the physical phenomena. This cavity has two char-

acteristics that are different from classical ones often consid-

ered in the literature: it is placed in a duct and it is partially

covered. This geometry is displayed in Figure 2. The ex-

perimental results obtained in the previous studies [4, 20] are

now used as validation data for the capability of numerical

tools to capture the flow acoustic phenomena in such config-

uration.

In Figure 3, it is shown that the frequency of the cavity

oscillation can lock-in the frequency of the pipe mode when

Rossiter’s mode approaches the duct mode. When lock-in

occurs, the pressure level of the oscillations is maximum. At

M = 0.13, the cavity mode 3 locks with the first transverse

duct mode and at M = 0.18, the cavity mode 2 locks with

the first transverse duct mode. At M = 0.23, the cavity mode

3 locks with the second transverse duct mode. More details

about these results can be found in [6].
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Figure 2: Sketch of the ducted cavity configuration.
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Figure 3: Computed frequencies (mode 2, �, mode 3, •) of

the cavity modes compared to experimental ones (mode 2,

�, mode 3, ◦) and to Rossiter’s and duct mode frequencies

(RM = Rossiter’s mode, DM = duct modes). The modified

2.DM mode is calculated with the sum of the duct and the

cavity heights .

4 Tests for complex geometry treatments

4.1 Treatment of corners
It is well known that the shape of corners is a crucial point

for the development of the physical phenomena and that a

slight modification of this shape can modify the instability

growth in the shear layer. These remarks are made for the

cavity case but there are more or less valid for all cases of

impinging shear layers where the shape of edges can be di-

verse.

The numerical treatment of these points depends on the

discretization method that is choosen : finite volumes, finite

difference, ... but it is also clear this numerical treatment is

quite difficult: definition of a normal, expression of deriva-

tives, ...

In our case, we have two solutions for the discretization

of cavity corners:

• The first solution is to only consider component grids

that are conformal (CG) and coincident. In this case,

the situation of a unique structured grid is retrieved as

it is shown in Figure 4. Then there is no numerical
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errors introduced by the interpolation process. On the

other hand, this approach appears to be quite restrictive

as our final goal is to handle industrial configurations.

Figure 4: Zoom on the corner meshing with conformal grids

(CG).

• The second solution is to introduce overlapping grids

which are non-conformal (NCG). In this situation, cor-

ners are always treated as rounded edges. This is an

approximation but it is a more versatile method able to

give discretization solutions for more complex geome-

tries while preserving the advantages of the numeri-

cal schemes. This situation is displayed in Figure 5.

A curvilinear grid patch is superimposed on the other

grids in order to build a rounded edge. This approach

is of course much more flexible and it is now possible

to introduce some geometry modifications to the cavity

such as chamfers. This possibility is not studied here.

Indeed, it is first necessary to study how it is possible

to vary the radius of curvature of the rounded corner

and to determine when it is equivalent to a sharp cor-

ner modelled with the first meshing method. In fact,

two kinds of errors are now present : the modelling er-

ror due to the rounded edge and the interpolation error

which is now present in the calculation contrary to the

first approach. Figure 5 clearly displays the layers of

interpolation points which make possible the commu-

nication between the grids.

4.2 Computational parameters
For the CG computation, 10 components grids are used

for building the whole grid. For the NCG computation, an

eleventh grid is added. For both cases, the total grid points is

around 10 millions. For the CG computation, the minimum

grid spacing is Δx = 1. × 10−4 m while for the NCG com-

putation the minimum grid spacing is Δx = 2. × 10−5 m. As

a consequence, the application of the CFL condition gives a

time step of Δt = 2. × 10−7 s for the CG computation and of

Δt = 5.5 × 10−8 s for the NCG computation.

It is well known that the boundary layer upstream the cav-

ity plays a crucial role as its shape controls the vortex shed-

ding and the convection of the eddies in the shear layer. In

this work, the experimental boundary layer profile is fitted in

Figure 5: Zoom on the corner meshing with non-conformal

grids (NCG).

a 1/n profile such as:

ub(y)

U0

=

(y
δ

) 1
n
,

where δ = 8.8 mm and n = 8.5.

The upstream mean Mach number is Md = 0.20 which

corresponds to a maximum upstream Mach number M0 =

1.2 × Md = 0.24.

This experimental profile is imposed as the initial con-

dition and also as the inlet boundary condition. In order to

preserve this profile till the cavity, a correction procedure is

applied on the grids upstream the cavity (see [6] for details).

As the flow is in the low subsonic domain, the mean den-

sity and pressure are taken constant at the inflow and outflow.

The Tam & Dong absorbing boundary condition is used for

allowing acoustic waves to exit the computational domain. A

sponge zone combining grid stretching and a Laplacian filter

is applied at the outflow to avoid spurious reflections when

eddies exit the computational domain.

4.3 Results
The figures 6 and 7 display two snapshots of the vortic-

ity field for the conformal grid case and the non-conformal

grid case, respectively. It seems that for the second case, the

shear layer above the cavity develops more rapidly, show-

ing bigger eddies. But, as the time step is much smaller for

the NCG computation, the time duration of the calculation is

still shorter and it is likely that the influence of the 2D coher-

ent structures is still visible. This influence should decrease

when the flow will switch to a full turbulent regime.

Figure 6: Snapshot of the vorticity field for conformal grids.
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Figure 7: Snapshot of the vorticity field for non-conformal

grids.

The figure 8 gives a comparison of the pressure spectrum

for the two cases. It appears that the two computations re-

trieve the same phenomena except that the main peak is 4 dB

lower for the NCG case. Then this is a quantitative difference

that could be analysed through three main reasons:

• The curvature radius for the NCG case is too large to

represent a sharp edge,

• There are some errors introduced by the presence of

the interpolation points,

• As the time step is much smaller for the NCG compu-

tation, the duration of the pressure history used for ob-

taining the spectrum is not the same for the two cases.

Further comparisons have to be carry out when the

time duration of the two calculations will be equiva-

lent.

The first and the two reasons given for explaining the dif-

ferences between the two results seem the more plausible. In

particular, a parametric study about the curvature ratio has to

be done.

Figure 8: Pressure spectrum for conformal and

non-conformal grids.

5 Conclusion
A high-order computational tool dedicated to aeroacous-

tic simulations, Code Safari, has been apply to the case of a

ducted cavity. The main goal of this work is to compare two

main approaches for meshing the cavity and more precisely

the upstream corner. It appears that the non-conformal grid

technique which is the more flexible for complex geometries

gives close results to the conformal grid technique. Neverthe-

less, a more detailed parametric study is necessary in order

to obtain final results.

Acknowledgments
The authors wish to thank Dr Bill Henshaw (Lawrence

Livermore National Laboratory) for his valuable recommen-

dations concerning the overset-grid strategy.

References
[1] J. E. Rossiter. Wind-tunnel experiments on the flow

over rectangular cavities at subsonic and transonic

speeds. Aeronautical Research Council Reports and
Memoranda, 3438, 1964.

[2] D. Rockwell and E. Naudascher. Self-sustained oscil-

lations of impinging free shear layer. Ann. Rev. Fluid
Mech., 11:67–94, 1997.

[3] X. Gloerfelt, C. Bailly, and D. Juvé. Direct compu-
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