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String players, and especially cellists, are well aware of a perverse phenomenon known as wolf notes. Physically,

such undesirable effect results from a severe interaction between the string and body vibrations, which are coupled

at the bridge, when the sounding note approaches the frequency of a low-damped body mode. The phenomenon has

invested considerable efforts to deal with the string/body coupled system. Particularly, different approaches have

been adopted to achieve nonlinear time-domain simulations, including methods based on wave propagation and

reflections as well as modal methods used by the present authors. Recently, the modal-based modelling developed

initially by the authors has been used to address the linearized modal dynamics of the bowed string/body coupled

system. Interestingly, the stability analysis provides a range of instability for a pair of coupled modes as the playing

frequency approaches that of the instrument body, suggesting that the basic mechanism of the wolf phenomenon

can be explained by a linear approach. Here, on the basis of our previous studies, we examine the features of

the linearized modal dynamics of the bowed string/body coupled model. The influence of parametric changes

in the control parameters is explored providing the modal frequency and modal damping values as a function of

the bowing parameters. Particularly, results show the dependence of the wolf beating frequency on the control

parameters as attested by the evidence of both experiments and nonlinear computations.

1 Introduction
Wolf note phenomenon in bowed-string instruments has

been the subject of various studies whether to prove of our

understanding of the complex dynamical behaviour displayed

by bowed string instruments or to provide guidelines for in-

strumentalists to control such undesirable phenomenon. When

a wolf note occurs, a low-frequency beating pervades the in-

strument response resulting in a characteristic warbling sound

and leading to a difficult control of the played note. Physi-

cally, the origin of the wolf note problem is a coupling phe-

nomenon resulting from the proximity of a string bowed note

and the modal frequency of a low-damped mode of the in-

strument body.

The question of an instrument’s susceptibility to wolf be-

haviour was first discussed by Schelleng [1]. Using a fre-

quency approach, Schelleng proposed a quantitative criterion

for the appearance of wolf-notes in terms of the string-to-

body impedance ratio and of the quality factor of the body

resonance responsible for the wolf. Later, using bow-force

limits arguments, Woodhouse [2] derived a quite different

criterion of wolf susceptibility involving a condition on the

bowing contact point as evoked by Gough’s observations [3].

Apart from such theoretical approaches, the wolf-note phe-

nomenon has also been studied by computer simulations, first

in the manner proposed by McIntyre, Schumacher and Wood-

house [4, 5]. An interesting situation is revealed when the

normal bow force is changed: pressing harder with the bow

tends to slow down the beating in the wolf note before sup-

pressing it, a phenomenon previously observed by Raman

[6]. In a recent paper, Inacio et al. [7] successfully achieved

numerical simulations pertaining to wolf notes using a modal-

based approach. Their simulations clearly illustrated the fact

that the wolf note beating frequency changes for different

playing conditions, pointing out the crucial role of the non-

linear feedback in determining wolf note essential character-

istics.

Although studies on the wolf note became less fashionable, it

appears that there are still few aspects deserving exploration.

The purpose of this work is to illustrate that a linearized ap-

proach of the bowed string as proposed in [8] can be instruc-

tive in exploring the wolf note phenomenon in several of its

characteristics. Recently, a first attempt has been presented

by the authors considering a linearized formulation of the

string/body coupled system and performing an eigenvalue

analysis. Results provide a region of instability for a pair

of coupled modes - which might be responsible for the wolf

- as the playing frequency approaches that of the instrument

body [9]. Overall, it suggests that if the underlying basic

mechanism of wolf phenomenon may actually be explained

by a linear model, other aspects may also be analysed using

such simple model.

In this paper, we consider a linearized approach for the bowed

string/body coupled system based on a modal representation

of the system dynamics as presented in [9]. We explore the

model to interpret the dependence of the wolf beating fre-

quencies with the control parameters and compare the linear

predictions with the corresponding nonlinear time-domain

simulations. The paper starts with a brief recall of our ap-

proach for achieving time-domain numerical simulations for

the string/body coupled system subjected to the highly non-

linear bow/string friction excitation mechanism. A few demon-

strative simulations of wolves are then presented, focusing

on the self-excited responses of the system for normal bow

force and bow velocity ramps. The modal equations of the

string/body coupled system are then linearized in the vicinity

of a steady sliding state enabling the computation of the sys-

tem eigenproperties. It provides insights into the changes in

modal frequencies and modal damping of the coupled system

in relation to the control parameters. Results show that the

frequency dependence of the beating frequency observed in

the nonlinear computations can be understood by such simple

model. Although not all the complex dynamics of the bowed

string can be explained by this kind of linear view, the paper

shows that performing a linear analysis can be instructive to

interpret nonlinear regimes, at least qualitatively and for low-

computational costs.

2 Nonlinear time-domain simulations
of the string/body coupled system

The modal-based computational approach used here has

already proved its efficiency in previous works concerning

bowed musical instruments. Details can be found in [7, 9].

2.1 Computational model
2.1.1 Formulation of the string dynamics

We consider an ideal string of length L , cross-sectional

area S and density ρ, fixed at both ends and stretched to an

axial tension T . The small-amplitude transverse displace-

ment ys(x, t) of a conservative string subjected to the ex-
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ternally applied excitation f (x, t) is described by the classic

wave equation:

ρ S
∂2ys

∂t2
− T
∂2ys

∂x2
= f (x, t) (1)

Adopting a modal formulation in terms of the string uncon-

strained real modes, Eq.(1) becomes:

[Ms]{Q̈s} + [Cs]{Q̇s} + [Ks]{Qs} = {F(t)} (2)

where dissipation in the form of modal damping was intro-

duced. [Ms], [Cs] and [Ks] are diagonal matrices of the

string modal parameters mn = ρS L/2, cn = 2mnωnζn and

kn = mnω
2
n, with ωn the circular eigenfrequencies, ζn the

damping values and n = 1, . . . ,Ns the mode index. {Qs(t)} =
{q1(t), . . . , qNs (t)}T is the vector of the modal responses and

{F(t)} = {F1(t), . . . ,FNs (t)}T is the vector of the modal forces

obtained by projecting the external forces on the string mode-

shapes ϕn(x) = sin(nπx/L):

Fn(t) =
∫ L

0

f (x, t)ϕn(x) dx (3)

In the following, the external force field is due to the local-

ized forces namely: (1) the friction force exerted by the bow

on the string, (2) the interaction force between the string and

the instrument body, and (3) the possible presence of a finger

on the fingerboard. The physical motion at any point of the

string can be computed from the modal amplitudes qn(t) by

superposition:

ys(x, t) =
Ns∑

n=1

qn(t)ϕn(x) (4)

2.1.2 The friction model

The friction model used in the numerical simulations is

of the Coulomb type with a velocity-dependent friction coef-

ficient. The friction force fc(t) arising between the string and

the bow at the contact location xc is given by{
fc(t) = −μd(vc) FN sign(vc) if |vc(t)| > 0

fc(t) ≤ −μS FN if |vc(t)| = 0
(5)

where FN is the normal force between the bow and the string,

μS is a static friction coefficient during surface adherence

and vc(t) = ẏs(xc, t) − vb(t) is the relative velocity between

the string surface and the driving bow. The dynamic friction

coefficient μd(vc) used during sliding depends on the relative

bow-string velocity according to:

μd(vc) = μD + (μS − μD)e−C|vc | (6)

where μD is an asymptotic limit of the friction coefficient

when |vc| → ∞ and C is a parameter controlling the de-

cay rate of the friction coefficient with vc(t). The friction

model (6) can be readily fitted to typical experimental data

by adjusting the empirical constants μS , μD and C. Basically,

sticking is simulated using an adherence stiffness as detailed

in [7, 9].

2.1.3 Formulation of the body dynamics

The response of the body can be represented by a simpli-

fied modal model:

[Mb]{Q̈b} + [Cb]{Q̇b} + [Kb]{Qb} = {Fb(t)} (7)

where [Mb], [Cb] and [Kb] are diagonal matrices for the in-

strument body modal parameters, {Qb(t)} = {q1(t), . . . , qMb (t)}T
and {Fb(t)} = {F1(t), . . . ,FMb (t)}T are the vectors for the

body modal responses and generalized forces respectively.

The modal forces are obtained by projecting the

bridge/body interaction force on the instrument body modal

basis. The body modal parameters were identified from a

single transfer function measurement at the bridge using the

ERA algorithm [10, 11]. The cello modeshapes were as-

sumed real and the modal masses were computed by pos-

tulating that the corresponding modeshapes are unitary at the

bridge location.

2.1.4 String/body coupling

Coupling between the string and the body is achieved

using a penalty formulation, by connecting the string to the

bridge through a very stiff spring. The force fb(xb, t) exterted

by the body on the string at the bridge location xb is:

fb(xb, t) = −KBS [ys(xb, t) − yb(xb, t)] (8)

where KBS is an empirical stiffness coefficient.

2.1.5 Finger control of the playing frequency

In order to control the playing frequency and shorten the

active length of the string, an artifical finger was modelled

using three spring/dashpots at coordinates x f1 = x f −Wf /2,

x f2 = x f and x f3 = x f + Wf /2 where x f and Wf are the

location and width of the finger respectively. As for the

string/body coupling, the interaction force f f j (x j, t) exerted

by the finger on the string at location x j is modelled using

a penalty formulation, imposing a near-zero displacement

according to:

f f j (x j, t) = −KFS ys(x f j , t) −CFS ẏs(x f j , t) ( j = 1, 2, 3)

(9)

where KFS and CFS are the empirical stiffness and damping

coupling coefficients.

2.2 Numerical simulations
The method previously described was used to simulate

the time-domain dynamical responses of the string/body cou-

pled system. Calculations were made for a cello string with a

linear density of ρ = 14× 10−3 kg.m−1 and a total length L =
0.83 m from the tailpiece to the nut, with an active length of

0.7 m from the bridge to the nut. The fundamental frequency

was 65.4 Hz and the string was assumed ideal for simplicity

so that the natural frequencies are harmonic. However, a real

string would be modelled with equal ease by using the corre-

sponding inharmonic modes. The string was modeled using

a modal basis of 80 modes and an average modal damping of

0.1% was used for all modes. The friction parameters were

μS = 0.4, μD = 0.2 and C = 5 and the bowing contact

point was 4 cm from the bridge. The string/body coupling

parameters were KBS = 108 N.m−1. For the finger model,

values of Wf = 1 cm, KFS = 105 N.m−1 and CFS = 10

N.s.m−1 were used. For simplicity, the instrument body was

modeled using a single body mode, experimentally identified

at 195.9 Hz with a modal damping value of about 1.3%. Note

that including a multimodal basis for the instrument body can

be easily done since a full modal formulation of the problem
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is employed in our model. Because of the explicit nature

of the integration algorithm used, a small time-step of 10−6s

was adopted.

As a first example, Figure 1 shows the time-domain response

of the bridge obtained for a slow increasing ramp in bow

velocity (0.01≤ vb ≤ 0.1 m/s, Tcal=10 s) and a fixed bow

force (FN=0.5 N) during a wolf (x f=0.368 m). Results show
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Figure 1: Simulation of a cello string bowed at the wolf

note position, for an exponential ramp in bow velocity.

Time-domain bridge response (up), instantaneous frequency

(middle) and time-varying beating frequency (above). 0.01≤
vb ≤ 0.1 m/s, FN=0.5 N.

clearly that a pronounced wolf is excited for the lower bow

velocity values as attested by the increase of the amplitude

response and the presence of beats. For higher bow veloc-

ities, the wolf note collapses and a higher-order regime of

low amplitude settles, dominated by the second modal fre-

quencies as seen from the computed time-varying playing

frequency. It is interesting to note that the model thus cap-

tures some essential characterisitcs of wolf notes, since such

behaviour is often encountered in playing experience. Of

particular interest is the increase in the wolf note beating

frequency (estimated using a zero-cross counting technique

from the amplitude of the Hilbert transform) as the bow ve-

locity increases. In practice, it suggests that the suppression

of the beats can be provided by adopting a slower bow veloc-

ity.

The second example concerns the simulation of a wolf note

as the bow force is increased (0.01≤ FN ≤ 10 N, Tcal=10

s) for a fixed bow velocity (vb=0.02 m/s, x f = 0.368 m).

Results are shown in Figure 2. For low force values, a low-

amplitude higher-order regime is excited, dominated by the

second modal frequency, as seen from the plots of the bridge

response and of the instantaneous frequency. When the bow

force becomes higher, it gives way in turn to successive oscil-

lating regimes, respectively a wolf note regime, a Helmholtz

regime and finally a raucous regime as supported by the dom-

inant frequency variations. Particularly, one recognizes the

flattening increase of the played note with bow force when

the bow force exceeds a threshold value as described in [5].

However, identifying the wolf note region is not as evident

as in the first case. To overcome this problem, we com-

pute the standard deviations of the bridge response and of its

envelope, estimated by Hilbert transform. Comparing these

information and using the time-varying frequency and time-

history bridge response, a range of bow force for which a

Figure 2: Simulation of a cello string bowed at the wolf

note position, for an exponential sweep in bow normal force.

vb = 0.02 N. From top to bottom: time-domain bridge

response; relative standard deviation between the bridge

envelope and the bridge response; time-varying frequency;

beating frequency.

wolf occurs can be estimated (in red in the time-history bridge

response). Then, looking at the lower plot in Figure 2, one

can note a small decrease of the beating frequency during the

wolf, from 7 to 5 Hz while the bow force increases of about

4/3. Such dependence of the beating frequency with the bow

force has already been discussed in [5].

3 Linear analysis
Despite the strong nonlinearity coming from the frictional

force, attention is now focused on the linearized string/body

coupled model which provides an appropriate framework to

study system instabilities as usually done for friction-induced

squeal problems [12]. The dynamic equilibrium state is a

steady sliding state which means that the operating point of

the linearized system does not include the very steep part of

the friction curve (see Ref. [5, 13, 7]).

3.1 Modal formulation
Looking for solutions in the form of Eq. (4) for the linear

model , the string displacement, velocity and acceleration are

now written as:

ys(x, t) = ȳs(x) + ŷs(x, t) =
Ns∑

n=1

q̄nϕn(x) +

Ns∑
n=1

q̂n(t)ϕn(x)

(10)

ẏs(x, t) = ˙̂ys(x, t) =
Ns∑

n=1

˙̂qn(t)ϕn(x) (11)

ÿs(x, t) = ¨̂ys(x, t) =
Ns∑

n=1

¨̂qn(t)ϕn(x) (12)

noting a bar and a hat for the steady deformed state and

small-amplitude oscillating quantities respectively. Since a

small perturbation of the steady sliding state will be influ-

enced by the friction curve locally, the non-linear frictional

force can be linearized around the associated mean string ve-

locity. The Taylor-serie expansion of Eq. (6) for ẏs(xc, t) �
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vbow gives:

μd(t) � μD + (μS − μD)e−Cvb [1 +Cẏs(xc, t)] (13)

and the frictional force becomes in the linearized model

fc(t) � f̄c + f̂c(t) (14)

where f̄c and f̂c(t) are the static and small-amplitude oscillat-

ing force components given by:

f̄c = FN [ μD + (μS − μD)e−Cvb ]

f̂c(t) = A ẏs(xc, t)
(15)

denoting A a control parameter which encapsulates all the

relevant parameters of the friction model:

A = FN (μS − μD) C e−Cvb (16)

By replacing (10), (11) and (12) in Eqs.(2), (7), (8) and (15),

one obtains a set of equations for the static modal amplitudes

(q̄n and q̄m) and a set of equations for the vibratory modal

amplitudes (q̂n and q̂m). The former set plays no role in

the dynamics of the perturbations analysis, as the zero-order

solution only represents a mean deformed state due to the

static force f̄c. However, the latter set provides information

about the system stability and how the linearized sliding state

will subsequently evolves. The first-order linearized system

is written as:

[M]{ ¨̂Q} + [C]{ ˙̂Q} + [K]{Q̂} = {F̂c} + {F̂b} +
3∑

j=1

{F̂ f j } (17)

where [M], [C] and [K] are diagonal matrices pertaining to

the coupled system modal parameters and {Q̂} = {{Q̂s} {Q̂b}}T
is a vector for the small-amplitude modal responses given by:

[M] =

[
Ms 0

0 Mb

]
, [C] =

[
Cs 0

0 Cb

]
, [K] =

[
Ks 0

0 Kb

]

The right-hand-side terms of Eq.(17) stem from the modal

projections of the linearized force field provided by the fric-

tion force, the string/body coupling and the finger/string in-

teraction with the following expressions:

{F̂c} =
[

AΦ(xc) 0

0 0

]
{ ˙̂Q} (18)

{F̂b} = −KBS

[
ΦS S (xb) ΦS B(xb)

ΦBS (xb) ΦBB(xb)

]
{Q̂}

−CBS

[
ΦS S (xb) ΦS B(xb)

ΦBS (xb) ΦBB(xb)

]
{ ˙̂Q} (19)

{F̂ f j } = −KBS

[
ΦFS (x f j ) 0

0 0

]
{Q̂}

−CBS

[
ΦFS (x f j ) 0

0 0

]
{ ˙̂Q} (20)

with the coupling matrices

Φ(xc) = {ϕn(xc)}{ϕn(xc)}T ΦFS (x f j ) = {ϕn(x f j )}{ϕn(x f j )}T
ΦS S (xb) = {ϕn(xb)}{ϕn(xb)}T ΦS B(xb) = −{ϕn(xb)}{φp(xb)}T
ΦBS (xb) = −{φp(xb)}{ϕn(xb)}T ΦBB(xb) = {φp(xb)}{φp(xb)}T

By assuming harmonic solutions, Eq.(17) leads to a stan-

dard eigenvalue problem. The eigenvalues λn = σn ± iω̃n

computed are in general complex and provide, apart the

(damped) modal frequencies ω̃n = �m(λn), the modal dissi-

pation values ζn = �e(λn)/|λn| which determine the system

behaviour before nonlinear effects take control. Particularly,

eigenvalues with a positive real part are characteristics of

an unstable state which will ultimately lead to self-sustained

vibrations. In particular, we expect to detect variations in

the modal frequencies of two unstable closely spaced modes

- modes which may be responsible for the wolf - by study-

ing the evolution of the eigenvalues as function of the input

control parameters.

3.2 Modal behaviour of the string-body cou-
pled system

To fix idea, Figure 3 shows a typical stability plot for

the first modes of the coupled system as a function of the

excitation control parameter A. A low-E ( f=65.4 Hz) note

is played, the green colour stands for stability and the red

colour for instability. As expected from Eq.(16) and illus-

trated in Figure 3, the parameter A clearly influences the

stable/unstable behaviour of the system coupled modes. Glob-

ally, it can be observed that many modes - those of the active

length of the string with harmonic series frequencies - be-

come unstable as A increases whereas other modes - those

to the bridge-tailpiece distance - remain stable. Interestingly,

Figure 3 readily gives an alternative interpretation of the

Helmholtz motion, in terms of modes, instead of the well-

known text-book description involving a Helmholtz corner

circulating backward and forwards along the string [13]. It

is then tempting to link these results to the player’s expe-

rience. For instance, the fact that higher modes loose their

stability before the fundamental mode might be related to

the so-called surface sound when the bow force is below the

minimum bow force as defined by Schelleng [14]. Further

demonstrative cases are given in Ref. [8].

The dependence of the wolf note beating frequency with

the input control parameters is now considered with the help

of the results plotted in Figure 4. As can be seen, the linear

approach predicts regions of instability for two closely space
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Figure 3: Stability plot as function of the coefficient A.

Green: stability; Red: instability.
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coupled modes in the neighbourhood of the body resonance,

when the bow force or the the bow velocity vary. As sug-

gested in [9], such behaviour can be interpreted as a plausible

occurence of a wolf note regime. To go further and to support

the idea that something can be gained by a linear analysis, a

more interesting situation is revealed when we look at the

frequency evolution of those two unstable modes as the input

parameters vary during a wolf. Figure 4 indicates that the

frequency separation of the two unstable modes decreases

as the bow normal force increases. Reminding that the beat

frequency is equal to the absolute value of the difference in

frequency of the two modes, this in turn leads to a decrease

of the beat pulsation, a tendency observed in nonlinear com-

putations (see Figure 2). Interestingly, the well-known fact

that pressing harder with the bow can ultimately suppress the

beating in the wolf note is also apparent in the present linear

analysis. Actually, Figure 4 predicts the stabilization of one

of the two unstable coupled modes when the normal force

exceeds a threshold value, which is the effect described by

Raman [6].

Other interesting aspect is revealed considering the influence

of the bow velocity. Figure 4 shows an increase of the fre-

quency difference between the two unstable modes as the

bow velocity is increased. In other words, the beating fre-

quency of the wolf grows with the bow velocity. This is pre-

cisely the behaviour provided by our nonlinear time-domain

computations (see Figure 1) and experienced on our instru-

ment. To make a critical comparison with the nonlinear com-

putations, Figure 4 suggests an upward frequency shift of the

unstable mode as the normal force increases although the

flattening effect is undoubtedly a physical reality [5]. Such

unrealistic result does not imply that our linear predictions

are seriously unrealistic. It is well-know that an hysteresis

occurs during the transition from slipping to sticking [5, 13],

an effect which is intrinsically due to the severe nonlinearity

of the friction force. These variations are, obviously, some-

thing that the linear approach cannot predict.

Finally, Figure 5 represents the stability plots of the two cou-

pled modes as a function of the bow normal force and ve-

locity. According to our linearized analysis, it is apparent

that a range of bow force and bow velocity exists for which

the two modes are unstable. It is then instructive to compare

the linear predictions with the results presented in Figure 6,

stemming from nonlinear computations at discrete bow force

values for an increase of bow velocity. Even if the agreement

is not expected to be very precise since there are many miss-

ing factors in the linear approach, the linear analysis predicts

instability of a pair of coupled modes in approximately the

same ranges as the nonlinear computations.

Overall, these results support the fact that a linear approach

captures some essential characteristics of wolf note regime

and can thus provide some interesting information with a

lower-expensive computer cost than nonlinear computations.

4 Conclusions
In this paper, a linearized analysis of the string/body cou-

pled system dynamics subjected to the highly non-linear

bow/string friction force mechanism was performed. Obvi-

ously, the linear approach does not directly provide a precise

information on the nonlinear self-excited regimes. Never-
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Figure 4: Stability plots of the two coupled modes which

may be responsible for the wolf. Up: as function of the

bow velocity; Down: as a function of the bow force. Green:

stability; Red: instability. Dot: uncoupled body resonance

frequency.

theless, this paper presents several examples showing that a

linearized approach of this particular nonlinear problem can

be instructive in predicting the gross features of the nonlin-

ear regimes. In particular, the interesting phenomenon of

the dependence of the wolf beating frequency with the input

parameters can be understood. As pointed out by Inacio et

al. [7], these results also suggest insights on the mechanism

through which musicians usually try to control wolf-notes.
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