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Experimental measurements of the diffusion constant for ultrasonic waves (around 3 MHz) propagating in water

through a scattering slab (parallel metallic rods) are presented. Sample thickness is around ten times the transport

mean free path. Several hundreds of transmitting/receiving positions, 40 mm off the sample surfaces, are used. Fo-

cused beamforming is achieved in emission and reception in order to mimic a set of virtual sources and receivers

located at the sample surface. The ensemble average of the transmitted intensity 〈I(x, t)〉 is estimated by averaging

over all possible couples of sources/receivers apart by the same off-axis distance x. Under the diffusion approx-

imation, 〈I(x, t)〉 shows a gaussian dependence on x, which makes it possible to measure a diffusion constant D

and thereby characterize the scattering medium. We discuss the experimental results and pinpoint the difficulties

of measuring a reliable value for D on a real sample. As it was observed in previous works on the elastic mean free

path, the diffusion constant D strongly depends on frequency, due to the resonant nature of the scatterers.

1 Introduction
Setting aside absorption effects, multiple scattering of ul-

trasonic waves in random distribution of scatterers immersed

in a fluid is essentially described by two key-parameters:

the elastic mean-free path le, and the diffusion constant D

[1, 2]. The importance of le arises when one is interested

in the ensemble-averaged wave field, the so-called ”coher-

ent wave”. In the case of an incoming plane wave with am-

plitude unity traveling along z, it can be shown that the av-

erage wave field 〈ψ〉 transmitted through a random medium

can be written as 〈ψ〉 = exp ( j(ke f f z − ωt)), where ke f f is an

effective wave number. Therefore, the intensity of the coher-

ent wave |〈ψ〉|2 decays exponentially with distance, and the

elastic mean-free path le = 1/2�m{ke f f } is the typical decay

length for the coherent intensity. On the contrary, the diffu-

sion constant D arises when one is interested in the average

intensity 〈|ψ|2〉 , rather than in the intensity of the average

field. To make a long story short, in 3D it can be shown

that as long as z >> le >> λ with λ the wavelength, the

average energy density U transported by a wave undergoing

multiple scattering is reasonably described by a simple dif-

fusion equation [3, 4] with D as the essential parameter. In

this work, we utilize controllable samples of metallic rods

for which the coherent wave has been already studied, and

le precisely measured and confronted to various theoretical

models [5]. But the actual value of D in these synthetic sam-

ples is still unknown, and contradictory values have been re-

ported [6, 7, 8], at least in backscattering. The objective of

this work is to test an experimental set-up that should be suit-

able for transmission measurements of the diffusion constant

through such forests of rods, and to present the first experi-

mental results.

2 Experimental procedure
Experimental set-up is shown in Figure 1. A short ultra-

sonic pulse (with central frequency around 3.25 MHz, corre-

sponding to a wavelength of 0.46 mm in water) is emitted by

means of a single 0.39-mm large transducer, and recorded,

after it propagated through the sample, with an array of 64

0.39-mm large transducer elements. Both the single trans-

ducer and the array are placed at a distance of 40 mm from

the sample in order to avoid reflections between the surfaces

of the sample and the transducers. The sample is a random

set of 0.8-mm diameter steel rods with density 29 rods/cm2.

A previous study [5] measured the value of the elastic mean

free path, le, for these samples. Integrated over the frequency

band 2-4 MHz, le was found equal to 3.15 mm while its max-

imum value in the same frequency band is 4.69 mm for fre-

quency 2.8 MHz. As a reminder, the density of steel ρsteel

is 7800 kg/m3, longitudinal velocity cL is 5.7 mm/μs and

transversal velocity cT is 3 mm/μs. Sample thickness is around

10 times the elastic mean free path, whereas sample width -

in the lateral dimension- is 28 cm. Such width enables trans-

ducers to be translated over 14 cm in the lateral dimension

in order to measure the transmission impulse response ma-

trix hi j(t), with j the source position index and i the receiver

position index, without any disturbance from the edges of

the sample. Distance between two contiguous positions is

0.5-mm in emission, and 0.417-mm in reception (pitch of the

array). In such a configuration, one has 1 ≤ i ≤ 320 and

1 ≤ j ≤ 280.

Figure 1: experimental set-up. A short ultrasonic pulse

propagates through a random set of steel rods immersed in

water. Scattered waves are recorded on a 64-element array.

The source and array can be translated parallel to the sample

for ensemble averaging.

The general principle of the experiment is to acquire a

set of impulse responses hi j(t), with actual sources and re-

ceivers away from the sample. Then, by means of classical

focussed beamforming in emission as well as in reception,

we create an other set of virtual emitters and receivers, lo-

cated at the front and back faces of the sample. Of course,

the virtual sources and receivers have a finite extent, which is

determined by diffraction laws. The new signals are arranged

in a matrix given by :

kRE(t) =
320∑
i=1

280∑
j=1

α jEβiRδ(t − τ jE − τiR) ∗ hi j(t) (1)

kRE is the acoustic field at a point R (position xR of the virtual

receiver) on the rear surface of the sample, when the virtual

source is located on the point E (position xE) on the front

surface of the sample. τ jE and τiR are the delays applied

in order to focus in emission and in reception respectively.

Equation (2) gives the delays applied in emission :

τ jE =
X − √(x j − xE)2 + F2

c
(2)
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X is the distance between the virtual source and the farthest

considered real sources. c is the velocity of sound in water

(c = 1.497 mm/μs). Delays applied in reception follow the

same equation but with indices i and R instead of j and E. The

α and β matrices contain apodization coefficients. They are

mostly used in order to control the lateral shape of the virtual

sources and receivers. The apodization coefficients α and β
were chosen so that the virtual sources and receivers had a

gaussian profile in exp (−x2/(2w2
0)), with a typical transverse

beam width w0. Apodization was also used to switch off real

sources or receivers if their positions x j or xi were considered

too far from a chosen focalization point (xE for virtual source

or xR for virtual receiver). Applying the time delays and the

apodization coefficients, both in emission (τ jE , α) and in re-

ception (τiR, β), we could recreate an array of 120 gaussian

sources and receivers with pitch p = 0.8 mm and a typical

width w0 = p/
√

2 ln 2 ≈ 0.68 mm.

Calculation of the transmitted intensity is done by inte-

grating the square of the signals on a small translating time

window, following equation (3) :

IRE(t) =
1

δt

∫ t+δt/2

t−δt/2
k2

RE(t)dt (3)

For the width of the window, we chose δt = 2 μs (roughly

6 periods). This value is small enough relatively to the typ-

ical decay time of the diffused signals, in order to ensure a

proper resolution in time, and large enough compared to the

central period of the wave. After calculation of the transmit-

ted intensity, the ensemble average of the transmitted inten-

sity is estimated as follows. The intensity IRE(t) is averaged

over all source-receiver couples apart by the same distance

x = |xE − xR| = np. The number of such couples is 120 for

x = 0 (the receiver faces the transmitter), and 2 · (120 − n)

for 1 ≤ n < 120. The resulting averaged intensity is denoted

Ī(x, t). Figure 2 shows the different steps we described until

now. One realization of the transmitted signal when virtual

source and receiver are aligned (on-axis) is plotted (top) with

its corresponding intensity (middle). On the bottom of Figure

2, the average transmitted intensity is plotted for the on-axis

configuration (x = 0). Comparison between the middle curve

and the bottom curve shows the effect of averaging.

By studying the average transmission of the intensity be-

tween two points across a scattering slab, our configuration is

similar to that proposed by Page et al [3]. Thus, the same ap-

proach is followed to determine the diffusion constant. The

slab is supposed to be thick enough for the diffusion approx-

imation to hold. The transmitted acoustic energy density can

be obtained by solving the diffusion equation in a slab of

thickness L with infinite transverse size [9]. The Green’s

function of the problem G(x,t) is determined by assuming

that the intensity source is a Dirac pulse in time, which be-

gins to diffuse at a distance z0 inside the sample (typically, z0

is of the order of a transport mean-free path [10, 3]). Tak-

ing into account the appropriate boundary conditions, the

Green’s function for the intensity G(x,t) can be calculated

[3], but its expressions depends on many parameters : the

sample thickness L, the penetration length z0, the transport

speed, the diffusion constant D, and if absorption must be

taken into account, an attenuation time τa. Therefore a di-

rect fit of the experimental data in Figure 2 is not the best

way to determine D, given the numbers of parameters in-

volved. Instead, we use the same idea as in [3]. At a given

time t, we study the ratio of the intensities detected off-axis

Figure 2: transmitted on-axis signal (virtual source and

receiver aligned) (top); on-axis transmitted intensity

calculated from previous signal (middle); on-axis averaged

transmitted intensity on 120 realizations (bottom).

and on-axis, i.e. g(x, t) = G(x, t)/G(0, t). The advantage is

that, provided that the transverse size of the sample is infi-

nite, the problem is invariant under translation along x, and

g(x, t) reduces to g(x, t) = exp (−x2/(4Dt)), so that the effect

of absorption, slab thickness and boundary conditions van-

ish. Since our sources are not really point-like, in order to

take into account the finite extent w0 of the virtual sources or

detectors, the experimental ratio R̄(x, t) = Ī(x, t)/Ī(0, t) will

be compared to g(x, t) ∗ exp(−x2/(2w2
0)) ∗ exp(−x2/(2w2

0)).

The choice of a Gaussian beam simplifies the result, since the

resulting intensity profile, at a given time t, is also a Gaussian

exp (−x2/(2W)) , with W(t) = 2Dt+ 2w2
0 . W(t) is the typical

area of the diffuse halo of intensity transmitted through the

slab at time t. At each time t an estimate of W(t) is found

by a linear fit of ln R̄(x, t) as a function of x2. Finally, a sec-

ond linear fit of W versus t yields an estimate of the diffusion

constant D.

3 Experimental results and interpre-
tations

A typical result is shown in Figure 3 where the average

transmitted intensity Ī(x, t) is represented as a function of lat-

eral position x and time t. Sample is a 46-mm thick slab of

density 29 rods/cm2 for which the elastic mean free path le
was previously found to be equal to 3.15 mm over the fre-

quency interval of 2-4 MHz [5]. On the bottom part of Figure

3, each column, corresponding to a time, is normalized by its

own on-axis value Ī(x = 0, t). The representation of R̄(x, t)
emphasizes the expansion of the diffusion halo -warm color

area- with time.

The typical lateral extension of the diffusion halo, W, is

estimated on the same data set, following the procedure ex-

plained in the end of section 2. It is plotted in Figure 4. The

curve shows a remarquable linear behaviour over almost all

the measurement time interval. This result is interesting be-

cause, as shown in [11], in a free 2d-space, the condition

ct >> le is not sufficient for the solution of the Boltzmann
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Figure 3: average transmitted intensity versus time and

position. On top, Ī(x, t) normalized by its maximum value.

On bottom, R̄(x, t). Sample is a 46-mm thick slab of density

29 rods/cm2.

equation to converge on the solution of the diffusion equa-

tion, instead, a sufficient condition is ct >> r, where r is the

distance between the source and the observation point. In our

case, r goes from 46 to 64 mm (z equals 46 mm for all the

positions of receivers and x goes from 0 to 48 mm) whereas

t goes from 50 to 320 μs, and condition ct >> r is not ful-

filled at early times. Moreover, steel rods are not isotropic

scatterers so that the mean free path we should consider is

rather the transport mean free path l∗ = le/(1 − 〈cos〉) which

takes into account the anisotropic behaviour of our scatter-

ers. 〈cos〉 is the average cosine of the wave scattered by one

rod. For instance, at the resonant frequency of the rods -2.75

MHz-, 〈cos〉 	 0.2 and l∗ = 5.8 mm. The time required for

the establishment of the diffusive regime is therefore length-

ened. At last, it is remarquable to see that the curve does not

saturate even at the end of the measurement time interval.

This seems to indicate that the edges of the sample do not

affect the halo expansion over the entire measurement time

interval.

Figure 4: measured lateral extension of the diffusion halo

after transmission through a 46-mm thick slab of density 29

rods/cm2. Time interval for the fit is 150-320 μs.

Corresponding D is 3.1 ± 0.3 mm2/μs

To estimate D, W is approached as a linear function of

t, over a time interval with limits tmin and tmax. Naturally,

the choice of tmin and tmax can seriously influence the result-

ing estimate of D. Physically, two criteria must be met : tmin

must be large enough for the diffusion approximation to be

valid, and tmax must be small enough so that the diffuse halo

of intensity has not yet reached the upper and lower edges of

the sample. In 3d-space, the first condition is met as long as

ct >> l∗ [11, 3]. However in 2d-space, the convergence to

the diffuse regime is slower. In order to determine tmin, we

compared the exact solution of the Boltzmann equation in

free-space [11] to the solution of the diffusion equation, and

chose for tmin the time such that the difference between the

two estimates of D was below 2%. This yielded tmin = 150

μs. This value may seem surprisingly high, given that Figure

4 seems quite linear even at earlier times : indeed, to solve

the Boltzmann equation we took for l∗ the highest value in

the 2-4 MHz frequency band. As to tmax, the criterion we ap-

plied was the following : since the halo is supposed to spread

transversely from the source as a gaussian with typical width√
2Dt =

√
l∗ctrt, we imposed that t should be smaller than the

time tmax for which 5% of the intensity halo has reached the

edge of the sample, even for the outermost sources/receivers.

ctr is the transport velocity, which has been assumed 	 c.

Again, by security, we overestimated the value of l∗ by re-

taining its highest value at 2.75 MHz. Actually, tmax was

found to be larger than the maximum time (320 μs) of our

recordings. Finally, the fit of W on time interval 150-320

μs gives D equal to 3.1 mm2/μs. Error on this experimental

value originates both from the spatial fit and from the time

fit. It was evaluated to ±0.3 mm2/μs. This experimental

value can be compared with a theoretical value. Formula

D = l∗ctr/2 gives values of the diffusion constant for dif-

ferent frequencies over the interval 2-4 MHz, provided that

the elastic mean free path has been measured and resolved in

the same frequency band. Using frequency-resolved values

of le( f ) that have been reported in [5], as well as calculated

theoretical values of 〈cos〉( f ), we could calculate theoretical

values of the diffusion constant for different frequencies in

the interval 2-4 MHz, assuming ctr 	 c. Averaging the latter

and weigthing them with the power spectrum of the transmit-

ted signals of matrice kRE , one found Dth = 2.8 mm2/μs, in

reasonable agreement with the measured value.

So far, the experimental value of D is, in fact integrated

over the frequency spectrum of the signal, approximately 2-4

MHz, corresponding to the limited bandwidth of our trans-

ducers. However, frequency-resolved measurements of the

elastic mean free path le [5] show that le strongly depends

on frequency. For instance, le shows a resonant pic at fre-

quency 2.75 MHz. This suggests that D will also depend

on frequency. After the focusing process, every signal from

matrix kRE is filtered on small frequency windows of width

δ f = 0.15 MHz. The lateral extension of the diffusion halo,

W, is then estimated for each narrow frequency bands so

as to obtain frequency-resolved measurements of D. Experi-

mental values are compared with theoretical values (formula

D = l∗ctr/2) in Figure 5. The agreement of experimental

values with theory is rather satisfactory at the resonance fre-

quency and upper right frequencies. These frequencies are in

the center of the bandwidth of our sensors and signals (3.25

MHz). In Figure 6, the lateral extension of the average trans-

mitted intensity is plotted for three different frequency bands.

On top, the central frequency corresponds to the resonance

frequency of the rods -2.75 MHz- whereas middle and bot-

tom curves correspond to frequencies 3.25 -central frequency

of emitted signals- and 3.8 MHz respectively. The latter fre-

quency is far from the resonance frequency. These curves
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Figure 5: experimental values of D versus frequency for the

46-mm thick sample of density 29 rods/cm2

essentially show that by filtering the intial signals, the mea-

surements of the extension W of the diffuse halo with time

become more noisy. Due to frequency filtering, the time res-

olution is poorer; the number of independent information in

a given time interval is reduced (here, roughly by a factor of

3 since 1/0.15 MHz ∼ 6 μs = 3 δt), and as a consequence the

statistical error bar is enhanced by ≈ √3 so that typical error

on D is of the order of ±17% instead of ±10%. It is there-

fore important to find a good compromise between frequency

resolution and good level of signal to noise ratio.

Figure 6: lateral extensions of the average transmitted

intensity as a function of time for three different narrow

frequency bands centered at frequencies 2.75, 3.25 and 3.8

MHz from top to bottom. Sample is a 46-mm thick slab of

density 29 rods/cm2.

4 Conclusions and perspectives
We presented a method, for the first time used on our

samples, to measure the diffusion constant of ultrasonic waves

in heterogeneous medium. It relies on the diffusion approx-

imation and it is based on the measurement of the lateral

expansion of the diffusion halo behind the sample after the

recording of the transmission impulse response matrix. Esti-

mation of the lateral extension of the halo, W, at everytime,

allows to estimate the diffusion constant D of the sample.

Considering broadband signals, the curve of W showed a re-

ally linear behaviour over almost the entire time interval of

the measurement, which demonstrates the consistency of the

diffusion approximation and therefore of the method. The es-

timated value for D (3.1± 0.3 mm2/μs) was found in reason-

able agreement with the theoretical prediction D = l∗ctr/2,

assuming that ctr = c. As we could expect a frequency be-

haviour of the diffusion constant, measurements of the dif-

fusion constant in narrow frequency bands were presented.

These measurements show that D actually depends on the

frequency. However, it is too early to draw conclusions from

these measurements, especially because of the uncertainty on

D in narrow-band experiments. Ideally, since le (hence l∗) are

known at each frequency, if D could also be measured as a

function of frequency with a good precision, then it would

be possible to deduce the transport velocity ctr = 2D/l∗, and

see if it differs significantly from c, the velocity of sound in

the embedding medium (water, here). It was already shown

in similar samples [5] that at the resonance, the group ve-

locity cg of the coherent wave is significantly reduced at the

resonance, dropping at 1.25 mm/μs. Here, the error bars

are so large that we cannot conclude yet that ctr is signifi-

cantly different from c or cg. In addition, the spectral study

of the transmitted signals shows that their frequency contents

change over time -widening over the resonance frequency-

which does not simplify the measurement of D. Future work

should especially focus on the determination of D in narrow

frequency bands. Measurements should be refined by finding

the right compromise between noise and bandwidth, to ob-

tain values of D both reliable and well resolved in frequency.

Consistent values of D could be compared with experimen-

tal values of the transport mean free path l∗, to determine the

transport velocity of ultrasonic waves in our samples. Fi-

nally, the ultimate aim of this research would be to develop

characterization technics that could be applied to real envi-

ronments. Of course, the transition from prototype medium

to real environments may be made only after understanding

the phenomenon of transition from radiative regime to the

diffusive regime.
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