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In order to reduce the environmental impact of aircraft, it is necessary to accurately simulate acoustics waves
propagation in a complex environment. A classical method used to compute the noise propagation on large
distances is the Boundary Element Method (BEM). However this method is restricted to a uniform flow. To
improve the level of modeling, we present here a coupling between Finite Element (FEM) and Boundary Element
Methods to solve the acoustic propagation problem that consists in a potential flow near the aircraft and a uniform
flow far-away from the aircraft. The Lorentz transformation is introduced in the exterior domain to easily use
the Boundary Element Method for the uniform flow. This transformation is also applied in the interior domain to
obtain a natural coupling between the two domains. 3-D numerical results representative of various configurations,
and in particular results with modal acoustic sources in the potential flow, are shown.

1 Introduction
Under environmental pressures, aircraft manufacturers

have developed tools to simulate acoustic waves propagation.
Computing acoustics in flows with zero or uniform velocity
can be inaccurate and non-physical, as the flow around
civil aircraft often reaches Mach 0.8 and installation effects
occur, due to the wings for instance. Then, introducing a
volume around the turbofan, where more complex flows
can be treated, and coupling it with an exterior Helmholtz
problem appears as a pertinent way to improve existing
simulation tools. This method allows to take into account
the modifications of the convective carrier flow due to the
presence of rigid objects and the use of a powerful method
for long range propagation will allow us to take into account
installation effects.

This work is the 3D extension to Duprey’s PhD thesis [1].

2 Physical model problem

2.1 Model problem
Three flow areas can be identified in our case (cf. Fig. 1):

1. complex viscous flow with compression, combustion
and expansion and the boundary layers (1’ area on Fig.
1),

2. potential flow,

3. uniform flow.

Figure 1: Air flux in a civil turbofan

The sound is produced as a result of all the complex
phenomena occurring in zone 1. In our study, we will
consider them as inputs. Motorists can produce models for
the engine sound generation, that often consist in acoustic
modes at the limit of zone 1. Then, difficulties specific to
this zone will not be treated here, and we will focus on the
acoustic propagation in the potential and uniform flows.

The potential flow assumption can be discussed for the
outgoing air flux. However, this assumption can be valid
for the front part of the turbofan and for some configuration
it can give reasonable results or at least starting points for
an improved method that uses the potential approximation
results.

The objective is to obtain the acoustic pressure around
the object. For that, following the potential assumption, we
define a scalar field ψ such that

−→
V =

−−→
∇ψ with

−→
V the flow

velocity.
The model problem that we consider is represented on

Fig. 2.

Figure 2: Notations and conventions

2.2 Acoustic equations
The flow quantities are split in acoustic and flow

quantities (with respectively indices “a” and “0”).
The acoustic potential ψa is defined as the solution of the

linearized Euler equations in the frequency domain [2]:

• in domain Ωe (uniform flow):

k2
∞+∆ψa +2ik∞

−−→
M∞ ·
−−→
∇ψa−

−−→
M∞ ·
−→
∇(
−−→
M∞ ·
−−→
∇ψa) = 0. (1)

• in domain Ω (potential flow):

ρ0

(
k2

0ψa + ik0
−−→
M0 ·
−−→
∇ψa

)
+div

(
ρ0

(
−→
∇ψa + ik0ψa

−−→
M0

))
− div

(
ρ0

(
−(
−→
∇ψa ·

−−→
M0)
−−→
M0

))
= 0 (2)
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where
−−→
M0 stands for the Mach vector, k the wavenumber, ρ0

the volume density and ψa the acoustic potential. Notice that
all quantities occuring in Eq. 2 are not uniform in space Only
subsonic flows are considered.

Using linearized Bernoulli equation it is possible to
recover the acoustic pressure and velocity from the acoustic
potential:

pa = −ρ0c0

(
−ikψa +

−−→
M0 ·
−−→
∇ψa

)
(3)

−→
Va =

−−→
∇ψa (4)

3 Problem formulation

3.1 Variational formulation in the potential
flow domain

We formulate Eq. (2) in a weak form:∫
Ωi

ρ0

[
−−→
∇ψa ·

−−→
∇ψt − k2

0ψaψ
t − (
−−→
M0 ·
−−→
∇ψa)(

−−→
M0 ·
−−→
∇ψt)

]
dω

−

∫
Ωi

ik0ρ0

(
(
−−→
M0 ·
−−→
∇ψa)ψt − (

−−→
M0 ·
−−→
∇ψt)ψa

)
dω

−

∫
Γ∞

ρ0

(
−→
∇ψa ·

−→n − (−ik0ψa +
−→
∇ψa ·

−−→
M0)(
−−→
M0 ·
−→n )

)
ψtdγ = 0

(5)

Γ∞ is the boundary between Ω and Ωe domains and we
will use a Boundary Element Method to obtain an expression
for the integral on Γ∞.

3.2 Formulation in the uniform flow domain
As in Ωe the flow is supposed uniform, we introduce the

Lorentz transformation to reduce Eq. (1) to the Helmholtz
equation. This transformation is composed of :

• a space transformation s

s
(
−−→
OP

)
=
−−→
OP + C

(
−−→
OP ·

−→
M∞

)
−→
M∞ (6)

with C = 1
M2
∞

(
1√

1−M2
∞

− 1
)
.

• a change of phase P:

Pφ
(
−→y

)
= φ

(
−→y

)
e

ik∞
−→
M∞·−→y√
1−M2

∞ (7)

Applying this transformation, the problem is written in
terms of −→x ′ = s

(
−→x

)
. Consider now the unknowns defined by

q = Pψa ◦ s−1 and λ =
∂q
∂n

on Γ∞.
As the equation to solve in Ωe is now the Helmholtz

equation, we can use the integral representation theorem
and the problem reduces to a variational formulation on the
boundary Γ∞:∫

Γ∞

[
D∗(λ) − N(q) +

1
2
λ

]
qt =

∫
Γ∞

∂qe
ainc

∂n
qt (8)∫

Γ∞

[
S (λ) − D(q) +

1
2

q
]
λt =

∫
Γ∞

qe
ainc
λt (9)

where qe
ainc

is the transformed acoustic potential created by
the source and operators D, D∗, S and N are the integral
operators arising in Helmholtz integral equations [3].

3.3 Coupled problem
As we impose that on Γ∞ the flow quantities are identical

for Ω and Ωe, the coupling conditions between the domains
Ω and Ωe are, ∀x ∈ Γ∞,

q|Ω(x) = q|Ωe (x)
∂q|Ω
∂n

(x) =
∂q|Ωe

∂n
(x) (10)

Using the Lorentz transformation also in the potential
domain Ω, the surfacic integral on Γ∞ of Eq. 5 can be
identified with one of the integral arising in the previous
Eq. (8).

The two domains can then be solved using a Levillain’s
S-formulation [4, 5]:

a(q, qt) +

∫
Γ∞

D∗
(
∂q
∂n

)
qt −

∫
Γ∞

N (q) qt

−
1
2

∫
Γ∞

∂q
∂n

qt =

∫
Γ∞

∂qe
inc

∂n
qt

−

∫
Γ∞

S
(
∂q
∂n

)
λt +

∫
Γ∞

D (q) λt −
1
2

∫
Γ∞

qλt = −

∫
Γ∞

qe
incλ

t

(11)
with a(·, ·) the bilinear operator of the volumic part defined
by

a(q, qt) =

∫
Ω

ρ0

ρ∞

[
−−−→
L−q ·

−−−→
L+qt − k0

2qqt

− ik0

(
−−→
M0 ·
−−−→
L−q

)
qt − ik0

(
−−→
M0 ·
−−−→
L+qt

)
q

−

(
−−→
M0 ·
−−−→
L−q

) (
−−→
M0 ·
−−−→
L+qt

)]
(12)

and (
−−−→
L± f

)
=
−→
∇ f +

[
C

(
−→
M∞ ·

−→
∇ f

)
±

ik∞
1 − M2

∞

f
]
−→
M∞. (13)

This coupled variational formulation is well-posed as
shown in [6].

3.4 Modal excitation
We will now consider the modeling of a modal source

included in the potential domain (the flow is however
supposed uniform on the modal surface ΓM). The unknowns
q and λ on ΓM can be expressed as a sum of incident and
reflected modes:

p =

M∑
m=0

minc∑
n=1

αmnuinc
mn +

M∑
m′=0

mdi f f∑
n′=1

βm′n′u
di f f
m′n′ (14)

∂p
∂n

=

M∑
m=0

minc∑
n=1

αmn
∂uinc

mn

∂n
+

M∑
m′=0

mdi f f∑
n′=1

βm′n′
∂udi f f

m′n′

∂n
(15)

with uinc
mn and udi f f

m′n′ the modal basis that depends on the
shape of the modal duct and αmn and βm′n′ the amplitude
coefficients for the modes. αmn are known whereas βm′n′ are
unknown. It is then possible to formulate the problem in
order to determine βm′n′ .

The Dirichlet-Neumann condition on ΓM can be
expressed by

−
1
ik
∂uinc

m,n

∂n
= Ym,nuinc

m,n, −
1
ik
∂udiff

m′n′

∂n
= Ym′n′udiff

m′n′ (16)
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with Ymn and Ym′n′ impedance coefficients that depend on the
mode.

We then obtain (if we consider only the coupling with the
FEM model and the modal surface) the following variational
formulation

a(q, qt) −
∑
m,n

βm,nYm,n

∫
ΓM

udiff
m,nqt

= −
∑
m′,n′

αm′n′Ym′n′

∫
ΓM

uinc
m′,n′q

t (17)

4 Numerical simulation
This study has lead to the production of a code,

incorporated in EADS-IW acoustic wave propagation
software. P0 finite elements are used for unknowns λ and
P1 finite elements for unknowns q. A fast multipole solver
(FMM) [7] can be used to solve the dense linear part of the
system due to the use of BEM.

Many test cases, from validation to pseudo-industrial
configurations, have been conducted, sometimes on a large
number of processors.

4.1 Cylindrical duct with uniform flow
Consider a modal cylindrical duct of length L = 1 m and

radius R = 0.25 m. The flow is uniform, in the direction of
the duct, with a Mach number of 0.8. The frequency of the
source is 1020Hz. (Fig. 3).

Figure 3: Some FEM-BEM configurations for the validation
on a cylindrical duct

Four kinds of computation have been performed:

• classical BEM pressure formulation of ACTIPOLE,

• potential BEM formulation,

• potential FEM formulation.

• potential coupled FEM-BEM formulation,

Comparisons have been carried out on the reflection
coefficients of the mode and the pressure predicted in the
duct. For instance, the comparison of the pressure field in
the duct predicted by the potential and the pressure BEM
formulations on this test case has shown a 2% error in

L2-norm. Due to finite element dispersion, the mesh must be
refined in the FEM part. Convergence studies are running.

The full FEM formulation allows to compare the
configuration of different flows between the modal surface
and the external domain Ωe with reference solution.

4.2 Fan model problem
We now consider a fan model problematic represented

Fig. 4. It consists in an annular duct with an infinite hub, two
flows considered as uniform without transition layer. We will
present here only results for the case where the two flows are
identical.

Figure 4: Fan problematic model problem

The inner radius is 0.6 m and the outer radius is 1.2 m.
The frequency of interest is 500 Hz and the flow velocity
is defined with a Mach number of 0.6. We will compare
an analytic solution (without Kutta condition) with the
solution given by the method proposed here. To simulate
this problem with a FEM-BEM approach, the infinite hub
has been truncated at a distance of 7.2 m and the FEM
domain consists in the jet flow but restricted to a distance
of 6.8 m from the trailing edge near the modal surface. The
receivers are located on a arc circle (θ = 0◦ corresponds to
the hub direction, θ = 180◦ to the backward direction).

Figs. 5 and 6 show the comparison of the two methods for
two modes and the RMS sum on all the propagative modes.

Figure 5: FEM-BEM results for modes (0,1) and (6,2)

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1282



Figure 6: FEM-BEM RMS results

Globally we have a good agreement between the two
methods. The main differences between the two methods are
in the hub direction and in the backward direction. These
differences are due to the truncation of the hub. A mesh
with 2.5 millions of volumic and 320 000 surfacic unknowns
has been used for this simulation. The FMM solver has
been selected and a residual of 10−5 has been reached in 81
iterations.

4.3 Potential flow around a sphere
Consider a test case with a rigid sphere in a Mach 0.4 flow

going up, and an acoustic source consisting of a “potential”
monopole above the sphere. We consider two configurations:

1. non physical case where the flow is uniform,

2. the flow is uniform outside the white “circle” and
potential inside, continuity across this “circle” is
verified.

In this example, the presence of a more realistic flow
around the sphere has modified the potential map as shown
Fig. 7. Local acoustic velocity and pressure magnitude have
increased, as well as its magnitude in the shadow zone.

Figure 7: Acoustic total pressure
(left uniform flow BEM, right potential flow FEM-BEM)

5 Conclusion
A coupled BEM-FEM formulation for the problem of

acoustic propagation in a mixed potential and uniform flow
has been written. This formulation has been implemented
into an industrial software that allows to take into account
realistic 3D configurations. It has also been validated on
canonical test cases, for which analytic references were

available, and more realistic test cases, for which the
influence of the potential flow is visible.

Some tests must still be performed. First to determine
the capabilities of this method to take into account a
configuration with a non-potential flow. These capabilities
must be measured from the observable point of view
for configurations representative of industrial test cases.
Secondly, further tests are needed to explore the meshing
requirements.
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