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Elastic metamaterials provide a new approach to solving existing problems in acoustics. They have also been

associated with novel concepts such as acoustic invisibility and subwavelength imaging. To be applied to many of

the proposed applications a metamaterial would need to have the desired mass density and elastic moduli over a

wide frequency band. To minimise scatter in acoustics applications the impedance of solid elastic metamaterials

also need to be matched to the impedance of the surrounding medium. Previous work has looked at the trade-off

between achieving the desired mass density and Youngs modulus, combined with an impedance which is matched

to the surrounding medium. This paper will focus on the problems which arise when the previously developed

theory and simulation is developed into an experimental demonstration. This includes the role which the control

system dynamics play on the achievable performance. Extending the controllability of the bandwidth of the desired

properties to an extent where the material could be applied to some of the novel applications will also be considered.

1 Introduction
The concept of a metamaterial was first established in the

field of electromagnetics [15, 17]. Since this initial work

the concept has broadened to include the field of acoustics

and elastodynamics [13, 11, 19, 8]. Important properties of

metamaterials include both a subwavelength structure and a

capability of providing a material with negative values for

its effective constitutive parameters, which in acoustics and

elastodynamics is the mass density ρ and elastic moduli κ of

the material. If pressure waves are being considered the elas-

tic moduli is the bulk modulus, whereas it is the shear modu-

lus when shear waves are being considered. When the mass

density and elastic moduli have opposite signs the material

acts to block the propagation of any wave within the mate-

rial. When both parameters have the same sign wave motion

is permitted. If both parameters are positive, the wave motion

is as expected in a conventional material. If both parameters

are negative then the refractive index of the material becomes

negative real. Any wave moving from a material with a pos-

itive real, i.e. conventional, refractive index, to one with a

negative real refractive index will experience negative refrac-

tion, whereby the refracted wave lies on the opposite side of

the boundary normal to the conventional case. This is still in

agreement with Snell’s law, with the refractive index being

given by n = ±√ρ/κ and is a concept which was first pro-

posed in electromagnetics [18]. Realizing a material with a

negative refractive index only became possible with the ad-

vent of metamaterials.

Elastic metamaterial designs have been previously pro-

posed to achieve the objective of either a single negative ef-

fective parameter or both parameters simultaneously nega-

tive. A negative effective mass density can be realized through

dipolar resonances contained within a host or attached to a

transmission material. Examples include an array of lead

spheres coated with a silicone rubber and embedded in an

epoxy host [13], resonant masses connected through a spring

element periodically along a transmission medium composed

of series mass and spring elements [20] and mass-spring res-

onators periodically attached to a slender beam [19]. In these

materials the negative effective mass density is associated

with the fundamental resonant frequency of the embedded or

attached elements. Alternatively a negative effective modu-

lus can be realized through monopolar resonances contained

within a host or attached to a transmission material. An ex-

ample is a material composed of an array of split hollow

spheres embedded within a sponge matrix [6]. Extensions

to this study suggest that a multi-band and potentially broad-

band response can be achieved by varying the dimensions of

the split hollow spheres [7].

Achieving a metamaterial with simultaneously negative

mass density and elastic modulus is notably more difficult

than achieving one with a single negative parameter. A re-

cent study provides a design for a system with a negative

effective mass density and modulus [12]. Locally resonant

translational and rotational inertia coupled by an arrange-

ment of springs provide a narrow frequency band in which

both a negative effective modulus due to a monopole reso-

nance associated with the rotational inertia and a negative

effective mass due to a dipolar resonance associated with the

translational inertia occur simultaneously. An important ex-

tension of this study is that the initial one-dimensional con-

cept is expanded to two-dimensions and the response demon-

strated in simulation. Another study also considers a two-

dimensional approach in which a lumped parameter system

is realized through a composite elastic structure which pro-

vides monopole, dipole and quadrupole resonances leading

to dispersive properties for the effective bulk modulus, den-

sity and shear modulus respectively [10].

All of these passive solid elastic metamaterial designs

rely on dynamic phenomena, usually in the form of spa-

tially periodic resonant structures to realize the negative ef-

fective parameters. This leads to a fundamental problem,

which is that the resulting effective mass density and elas-

tic moduli are both inherently dispersive in nature and only

negative over a limited frequency band. While some stud-

ies have shown that in solid elastic materials it is possible to

create a wide frequency band in which one of the effective

parameters is negative, the simultaneously double negative

frequency band is restricted by the narrow band of the other

negative effective parameter [12, 10]. It may be possible to

extend these approaches such that the double negative fre-

quency band broadens [7], but due to the dispersive nature

of the effective parameters the resulting negative effective

refractive index is dispersive. This may not be a problem

for an application with a fixed narrow band response as the

dispersion maybe limited over this band, but may limit the

application of these designs to some applications, including

the novel applications which have been proposed for meta-

materials, such as invisibility cloaks [14] and subwavelength

resolution lenses [9].

An alternative is a material in which the narrow dou-

ble negative band can be adapted. This could be achieved

through an active elastic metamaterial design, whereby a force

applied to an array of single resonant units provides a system

which emulates the monopole and dipole behavior required

by an effective system to provide negative effective values

for the bulk modulus and density [16]. The advantage of

such an arrangement is that the control system can be tuned

so that the double negative frequency band and transmis-

sion properties can be designed for a particular application,

or potentially adapted online. Active acoustic metamaterials
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have also been investigated [1, 2]. In these metamaterials the

transmission medium is a fluid as opposed to a solid elastic

medium and have thus far been designed to control a single

effective parameter with a positive value only.

The one-dimensional active elastic metamaterial previ-

ously proposed was purely theoretical and ignored important

elements which need to be considered if the design is to be

verified experimentally [16]. It assumed that the displace-

ment and velocity of the lumped elements in the transmis-

sion material and of the resonators could be measured per-

fectly and that these measurements could be fed back and a

force applied to the resonant masses which is purely propor-

tional to the motion of the measured elements. In reality this

could not be achieved experimentally as any sensor used to

measure the motion and any actuator used to apply a force

will inherently posses a dynamic response. In addition there

will be a delay introduced into the feedback loop due to the

sample time of the control system. The concept for an elastic

metamaterial presented here remains broadly the same as that

previously proposed. However, in this paper the dynamics of

the actuator are introduced into the model as it is well known

that introduction of the actuator dynamics in control systems

can lead to issues with both stability and achieving the de-

sired closed loop response. Following introduction of the

actuator dynamics, the stability of the system, together with

its ability to provide the desired effective mass and stiffness

response with simultaneously negative bands is investigated.

2 Metamaterial Design
Figure (1) displays the metamaterial design which was

previously presented, with the addition of the actuator dy-

namics represented by the Laplace domain transfer function

ga(s, xrn ). The gray lines indicate the measurement/actuation

(input/output) paths for the control system and gc is the con-

troller, which for the previous design for a double negative

metamaterial was (scc + kc)(xn−1 + xn+1 − 2xrn ). When the

actuator dynamics are ignored, i.e. ga = 1, the effective mass

me and combined effective damping and stiffness be = ces+ke

are given by Eq. (1) and Eq. (2) respectively. This assumes

the Kelvin-Voigt model of viscoelasticity such that the effec-

tive equation of motion for mass n is given by Eq. (3).

Figure 1: Design for a locally resonant metamaterial which

consists of an array of transmission masses m, resonant

masses mr and feedback control system designated by the

gray lines.

me = m +
mr (cr s + kr)

mr s2 + (2cc + cr) s + 2kc + kr
(1)

be = cs + k +
(ccs + kc) (cr s + kr)

mr s2 + (2cc + cr) s + 2kc + kr
(2)

mexns2 = (ces + ke) (xn−1 + xn+1 − 2xn) + fn (3)

The previously proposed control scheme requires an iner-

tial force to be applied to the resonant masses in the metama-

terial. In active vibration control this force can be provided

by an inertial actuator, whereby a force generating mecha-

nism is attached at one end to the structure to which the force

is to be applied and at the other end to a mass which is not

connected at any other point. As such the actuator can be

modeled by a mass ma connected to the supporting structure

by a force generating element which provides force fa and

a spring ka and damping element ca in parallel [3, 5]. The

force fi provided by this type of actuator to the support struc-

ture is given by Eq. (4), where xr is the displacement of the

supporting structure, which for the proposed arrangement is

the displacement of the resonant masses of the metamaterial

structure.

fi = − mas2 (cas + ka)

mas2 + cas + ka
xr − mas2

mas2 + cas + ka
fa (4)

= gxxr + g f fa

Thus the mechanical structure leads to an applied force

which is a function of both the motion of the attached struc-

ture and of the force provided by the active element. The

force provided by the active element depends on the generat-

ing mechanism. Two common mechanisms are electromag-

netic actuation [5] and piezoelectric actuation [4]. Electro-

magnetic actuation is able to provide a significant force down

to very low frequency, whereas piezoelectric actuation, due

to the high inherent stiffness of the piezoelectric element can

only provide small forces at low frequency. Since a metama-

terial provides an effective response with a subwavelength

structure, the focus is on controlling its response at low fre-

quency, leading to the electromagnetic actuator providing the

most suitable frequency response for this application. The

force fa generated by the electromagnetic element will be a

function of the voltage applied to the element, which is typi-

cally a second order response due to electrical characteristics

described by an LCR (Inductor-Capacitor-Resistor) circuit

[5]. However, initially here we will assume that the electrical

characteristics can be described by the transfer function gv

such that fa = gvva where va is the applied voltage.

Introducing the mechanical model of the actuator into the

equations of motion of the metamaterial elements leads to the

effective mass me and complex stiffness be terms given in Eq.

(5), Eq. (6) and (7). These differ from the previous ideal

parameters in Eq. (1) and Eq. (2) in terms of the dynamics

of the actuator. If at this stage the electrical characteristics

of the actuator are ignored and it is assumed that the force fa
is linearly proportional to the applied voltage va, the focus is

on the effect of the mechanical characteristics of the actuator.

This simplification is reasonable when the force response of

a typical actuator is measured. Figure 2 displays the mea-

sured force response (red) compared to the corresponding

mechanical model (blue) for a commercial electromagnetic

actuator (Data Physics Corporation SignalForce IV40) when

connected to a fixed plate such that xr in Eq. (4) is zero.

It is clear that the response is dominated by the mechanical

resonance of the actuator.
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Figure 2: Force magnitude - frequency response of a typical

commercial electromagnetic actuator. The red line is the

measured force when the actuator is attached to a fixed plate

and the blue line is the corresponding response of the model.

Me = m +
(cr s + kr)

(
mr

(
mas2 + cas + ka

)
+ ma (cas + ka)

)
d

(5)

Be = cs + k +
mas2 (cr s + kr) gc

d
(6)

d =
(
mr s2 + cr s + kr

) (
mas2 + cas + ka

)
+ mas2 (2gc + cas + ka)

(7)

The desired terms required for analysis of the effective

parameters are the real parts of Eq. (5), (6) and (7). Not-

ing that the denominator of the transfer function on the right

hand side of both terms is the same, the real parts of both

parameters can be written as Eq. (8) and (9), in which d
represents the denominator, nm and nb the numerators of the

transfer function on the right hand side of the effective mass

and stiffness respectively and ∗ the complex conjugate in the

frequency domain realized by the substitution s = jω.

Re (me) = m +
nmd (gc)∗

d (gc) d (gc)∗
(8)

Re (be) = k +
nb (gc) d (gc)∗

d (gc) d (gc)∗
(9)

As the denominator of the term on the right hand side in

both equations for the real part of the effective parameters

is the complex denominator multiplied by the complex con-

jugate of the denominator of the original terms, it is positive

semi-definite. As a result the objective of providing negative

effective mass and stiffness requires the numerator of both

terms to be negative over a specified frequency bandwidth.

Assuming positive values for all of the parameters leads to

alternating sign for increasing powers of ω2 where ω is the

frequency. To ensure a large negative value for the terms on

the right hand side, the negative frequency band of the nu-

merator must overlap with one of the resonant frequencies

provided by the denominator.

Due to the increased complexity that the actuator dynam-

ics have on the equations describing the effective mass and

stiffness, it is interesting to consider what the simplest con-

trol scheme is which allows both the effective mass and stiff-

ness to become negative. Subsequently it can be determined

whether this control scheme can be extended to provide en-

hanced performance. Keeping the variables which are fed

back the same allows the structure required for the effective

mass and stiffness to be realized in such a way the denom-

inator is the same for both. This is important as the roots

of this denominator determine when the effective parameters

are sufficiently large. The simplest controller which can be

used in conjunction with this is direct displacement feedback,

i.e. cc = 0 in the previously proposed scheme which leads to

kc(xn−1 + xn+1 − 2xrn ). Implementing this control structure

significantly simplifies the expressions for the effective mass

and stiffness when the actuator dynamics are introduced. The

addition of the additional control parameter ccs may provide

additional performance benefits, but this is the subject of fur-

ther work.

A necessary, but not sufficient condition for the effective

mass and stiffness to be negative can be derived by consid-

eration of the region in which the numerators of the transfer

functions in Eq. (8) and Eq. (9) are negative. This leads

to two inequalities which are the conditions for the effective

mass and stiffness respectively and are given in Eq. (10) and

(12). In Eq. (10) for brevity the coefficients are represented

by variables due to their length. All four of the coefficients

are positive definite as they only contain positive summations

with only e4 and e2 a function of the control parameter. As

a result the condition E1 for the effective mass will be nega-

tive in two regions: the first is a low frequency band and the

second a high frequency band which stretches to infinite fre-

quency. The low frequency region is dependent on the coeffi-

cient e2 being sufficiently larger than e0 and e4. Whereas the

condition E2 for the effective stiffness will also be negative in

two frequency bands: the first is a low frequency band which

stretches down to zero frequency and the second is a high

frequency band which stretches up to infinite frequency. To

ensure negative effective parameters these negative regions

must overlap with at least one of the resonant frequencies of

the denominator in Eq. (8) and (9). To be simultaneously

negative they must overlap with the same resonance. Techni-

cally they do not necessarily need to overlap with the center

point of the resonant frequency as long as the magnitude in-

duced by its effect is sufficient to be greater than the passive

mass m and stiffness k.

E1 = −e6ω
6 + e4 (kc)ω4 − e2 (kc)ω2 + e0 < 0 (10)

E2 = − (mamrkr − cr (ma (ca + cr) + mrca)))ω4 (11)

+
(
kr (ma (ka + kr + 2kc) + mrka) − c2

r ka

)
ω2

−
(
kak2

r

)
< 0

As the ability to control both the numerator and denomi-

nator is coupled due to the single control coefficient, the sign

and magnitude of the effective parameters cannot be con-

trolled independently. Thus the design doesn’t guarantee the

ability to provide negative effective parameters for a given

passive system. A further problem which arises is that the

lower frequency negative band of E1 lies immediately above

the lower band for E2 leading to non-simultaneously nega-

tive mass and stiffness in the frequency domain. By extend-

ing the control system to kc(xn−1 + xn+1 − 2acxrn ) the extra

design freedom ac allows the lower frequency band of E1 to

be moved to a lower frequency for ac > 1 leading to a si-

multaneously negative band in the frequency domain. The

stability and controllability of the active metamaterial using

this extended control system is discussed in the next section.
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3 Stability and Controllability
If it is assumed that the active metamaterial employs the

previously described control scheme which can provide neg-

ative effective parameters and includes actuator dynamics,

the controlled system can be represented as a standard mul-

tivariable transfer function with feedback. Assuming that

�u = [ �f , �fr]T where �f and �fr are the vectors of forces ap-

plied to the transmission and resonant masses respectively

and that �y = [�x, �xr]
T where �x and �xr are the vectors of dis-

placements of the transmission and resonant masses respec-

tively, the control Gc is expressed as in Eq. (12). Where the

four sub matrices of Kc are all n×n matrices (n is the order of

the system i.e. the number of transmission masses) with Kc1,1

and Kc1,2
both zero matrices, Kc2,1

a zero matrix except for 1’s

on the two diagonals either side off the leading diagonal and

the two end elements of the leading diagonal and Kc2,2
is the

zero matrix with -2 of the leading diagonal except for -1 on

the elements at both ends of the diagonal.

Gc = gxÎ − kcg f Kc

= gx

[
0 0

0 I

]
− kcg f

[
Kc1,1

Kc1,2

Kc2,1
acKc2,2

]
(12)

The closed loop response of the active metamaterial can

then be determined by �y = (I −GGc)−1 G�u, where G is the

open loop response. Analyzing the stability of the proposed

metamaterial is not trivial due to its multivariable nature,

coupled with the effect that an increasing number of layers

has on the order of the response. Internal stability is guaran-

teed if (I −GGc)−1 is stable and there are no right half plane

pole zero cancellations between G and Gc. As G is stable

the concern is whether any right half plane zeros in G cancel

with right half plane poles in Gc. The poles of the controller

in Eq. (refeq12) are essentially the roots of the the denom-

inator of the actuator model g f given in Eq. (5) and so are

guaranteed to be stable, leading to no right half plane pole-

zero cancellations. Thus determining the stability of the pro-

posed active metamaterial reduces to analysing the roots of

(I −GGc)−1. The remaining problem lies with the increasing

complexity associated with adding more transmission masses

to the metamaterial.

The stability of this system subjected to a varying feed-

back gain can be analysed using well known stability analy-

sis tools. Figure (3) shows the movement of the closed loop

poles for a fourth order system n = 4 (i.e. four transmis-

sion masses) subject to the proposed extended control sys-

tem with ac = 0.2 and passive material parameters m = 5kg,

mr = 2kg, c = 0.1Ns/m, cr = 2 × 103Ns/m, k = 5 × 104N/m
and kr = 8 × 103N/m. These are not necessarily realistic

parameters for a metamaterial, but are matched to the ac-

tuator dynamics displayed in Figure (2) and used from a

proof of concept point of view. Nevertheless, these parame-

ters could be combined with realistic dimensions to provide

a metamaterial for very low frequency operation. The blue

lines show the movement of the poles as the gain increases

from zero (indicated by the red crosses). The trajectory of

the closed loop poles indicates that the active metamaterial

is stable from zero feedback gain up until an upper cut-off

kcstable when the complex conjugate pair of poles at the top

and bottom of the locus move into the right half plane.

To provide a system which is both stable and has negative

effective mass and stiffness, the desired region for the gain

Figure 3: Plot of closed loop poles for increasing feedback

gain kc. The two poles at the top and bottom become

unstable above kcstable

specified by these two performance objectives must overlap.

This can be determined by solving for the range of gains an-

alytically. However it is effective to present the influence of

the gain in a graphical form. Figure (4) plots the real part

of the potentially unstable pole in Figure (3) against the real

part of the effective mass (blue) and stiffness (red) for a gain

which varies from zero up to above the upper cut-off for sta-

bility. Interest lies in the lower left quadrant as this is where

both the effective mass and stiffness will be if they are neg-

ative and the system is stable. It is clear that over a range of

gains both the effective mass and stiffness can be negative for

a stable system.

Figure 4: Plot of the real parts of the effective mass (blue)

and stiffness (red) against the real part of the potentially

unstable poles as the control parameter kc increases.

The requirement for a negative refractive index is that

both the frequency dependent mass and stiffness are simul-

taneously negative. Figure (5b) plots the real part of the ef-

fective mass and stiffness over a frequency range for a fixed

and stable kc. It is evident from this plot that the effective

mass and stiffness become negative simultaneously (i.e. the

plot enters the lower left quadrant) for this stable system over

a range of frequencies. Figure (5a) takes a frequency in

which the parameters are simultaneously negative and plot

the change in these variables against a changing kc. This plot

indicates that there is also a range in feedback gains for a

given frequency in which both parameters become simulta-

neously negative. Figure (5) thus indicates that the active
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metamaterial design which incorporates actuator dynamics

and the modified control law kc(xn−1 + xn+1 − 2acxrn ) does

provide a double negative region for the effective parameters

and this region to some extent is tunable.

Figure 5: Real parts of the effective mass against stiffness

for: (a) A fixed frequency and changing control parameter

kc; (b) A changing frequency and fixed control parameter kc.

4 Conclusion
A previously proposed theoretical design for a one di-

mensional active elastic metamaterial has been extended to

a design closer to that which will be implemented experi-

mentally through the introduction of actuator dynamics. The

analysis has shown that this design is capable of providing a

negative effective mass and stiffness, but the actuator dynam-

ics provide limitations to achieving the desired response, no-

tably restrictions on achieving simultaneously negative mass

and stiffness in a frequency band which was relatively easily

achieved in the ideal design. By making a simple extension

to the proposed control scheme it has been shown that the

added control variable can help decouple the response of the

effective mass and stiffness, leading to a double negative re-

gion being achieved. Subsequently it has been shown that the

proposed active metamaterial is stable for a region of control

parameters and in this stable region the double negative band

exists and is controllable to some degree. Further extensions

to this work will be to conduct further in-depth analysis of

the stability and controllability, introduce sensor dynamics,

assess the effect of model uncertainties and to extend the de-

sign to a full experimental realization.
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