
Discussion on various model of multiple scattering in
acoustics and elastic heterogeneous media

L. Le Marrec and G. Futhazar
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A new formulation of the effective wave through a heterogeneous medium is the starting point of this paper. The
coherent scattered field from a fixed inclusion is supposed to propagate with a complex effective wave number
K. The objective is to find the expression of K(ω) according to the concentration of inclusion. This is performed
in first order and traditional Foldy expression is obtained. Moreover the result at a second order differs from
classical references as Linton-Martin formula. Each step of the method is detailed in order to discuss on the
various consequences of proposed formulation. In particular, the solution for two coupled inclusions is detailed in
order to highlight the consequences of hypotheses on the coupling regime.

1 Introduction

Multiple scattering methods [1] is applied to obtained
some specifications of wave propagation through a random
distribution of scatterer. This is performed by considering
the coherent wave obtained by averaging the fields over all
possible configurations of disorder [3, 4]. One of the main
objective is to characterize an effective wave number. This
later is generally defined as the wave number of the field ex-
citing a representative scatterer. Several traditional steps are
used to obtain such results some are statistical [2] some other
are more based on the physical process. We propose here an
original formulation that does not give new fundamental re-
sults but can be useful for specific problem typically when
the source is no more a plane wave and when the physical
contrast between matrix and inclusion is high.
The presentation is based on 2D-acoustical problem, where
a random distribution of identical circular cylinders are con-
fined in a specific domain.

2 Scattering formulation

We consider time-harmonic acoustical waves with angu-
lar frequencyω. Displacement �u and pressure p in a medium
of density ρ and celerity c are expressed thanks acoustical po-
tential ψ: �u = ∇ψ and p = −iωρψ. In homogeneous medium,
the potential ψ satisfy the Helmholtz equation with wave
number k = ω/c and is a linear combination of 2D harmonic
eigen function φn(k�r) = Jn(kr)einθ and φ̂n(k�r) = Hn(kr)einθ,
where Hn ≡ H(1)

n , r and θ are respectively the length and
angle of vector position �r according to a given frame.

2.1 Scattering by one inclusion

Consider a single inclusion with radius a. Material prop-
erties of inclusions are with the indices 1 whereas no indices
are placed for the matrix case. Incoming, scattered and trans-
mitted fields have to satisfy some restrictions. First, the in-
coming field ψi is supposed to be regular in the vicinity of
the origin of the frame. Second the scattered field ψs must
satisfy the Sommerfeld radiation condition. Third the trans-
mitted field must be defined in the inclusion. According to
these limitations, these fields can be expressed in a frame
centered on the circular inclusion by ψi(�r) =

∑
n cnφn(k�r),

ψs(�r) =
∑

n anφ̂n(k�r) and ψt(�r) =
∑

n bnφn(k1�r) where the co-
efficients cn, an, bn are the modal amplitude according to the
specified frame. For perfect boundary condition continuity
of displacement and pressure is imposed at the boundary, in
term of potential: ∂rψ0 = ∂rψt and ρ0ψ0 = ρ1ψt at the bound-
ary and ψ0 ≡ ψi + ψs. Then we have to solve:∑

n

(
an∂rφ̂n(k�r) + cn∂rφn(k�r)

)
=

∑
n

bn∂rφn(k1�r)

ρ
∑

n

(
anφ̂n(k�r) + cnφn(k�r)

)
= ρ1

∑
n

bnφn(k1�r)
, r = a

We have ∂rφ̂n(k�r) = k H′n(ka)einθ et ∂rφn(k�r) = k J′n(ka)einθ.
Because

∫
einθdθ = 2πδn, the integration over θ leads to a

linear system where solutions for each modes are uncoupled:

anH′n(ka) −
k1

k
bnJ′n(k1a) = −cnJ′n(ka)

anHn(ka) −
ρ1

ρ
bnJn(k1a) = −cnJn(k1a)

(1)

Introducing the coefficient

Δn =
ρc
ρ1c1

Hn(ka)J′n(k1a) − H′n(ka)Jn(k1a),

the scattering coefficients are an = zncn with zn = −�(Δn)/Δn.
For further development we introduce infinite vector a :=
(. . . , an, . . .) and scattering matrix Z: (Z)nm := znδnm. Ac-
cording to these conventions we have a = Z c. In the special
case of rigid inclusion ∂nψ0 = 0 and for a void ψ0 = 0 ;
for such impenetrable scatterer the same methodology gives
zn = −J′n(ka)/H′n(ka) and zn = −Jn(ka)/Hn(ka) respectively.
Notice that these results have sense only for fields expressed
in a frame centered on the cylinder.

2.2 Scattering by N inclusions

Let now consider N inclusions labeled s j ( j = 1, . . . ,N).
For each inclusion s j a centered frame is defined. The posi-
tion of a point M is then given by the local position vector
�r j. The vector form si to s j is �ri j. The transmitted and scat-
tered field of each inclusion expressed in its local frame is
ψ

j
t =

∑
n b j

n(s j)φn(k1�r j) and ψ j
s =

∑
n a j

n(s j)φ̂n(k1�r j). In order
to solve the boundary condition for a given inclusion (say the
first) all the field at its boundary must be given in the frame
of s1. According to the Graf’s addition theorem [5] the field
scattered by s j at M is, in the frame of s1:

ψ
j
s(M) =

∑
n

a1
n(s j)φn(k�r1) , a1(s j) = Ŝ 1 ja j(s j)

if r1 < r1 j. This later restriction is of course fulfilled at the
boundary of s1 because inclusions do not overlap. The trans-
formation matrix Ŝ 1 j from the frame j to the frame 1 is de-
fined by (Ŝ 1 j)nm = φ̂n−m(k �r1 j). Using the same methodology
than for a single scatterer one obtain a system of N equations:

ai(si) = Z

⎛⎜⎜⎜⎜⎜⎜⎝ci
+

∑
1� j

Ŝ i ja j(s j)

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1, . . . ,N (2)

where ci is the modal amplitude of the incoming wave in the
si-frame. This system is well-posed if the position of each
inclusion is known.

3 Multiple scattering problems

3.1 Coherent Potential Approximation

The coherent wave can be obtained by averaging the field
over all possible configuration of scatterers. If the surface
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concentration is ϕ, the mean field is then 〈ψ〉 = ϕ 〈ψ1〉 + (1 −
ϕ) 〈ψ0〉 where 〈ψ0〉 and 〈ψ1〉 are the mean of external and
internal field. Coherent Potential Approximation (CPA) [1]
supposes that the coherence is lost far from the sources and
the boundary ∂B of the heterogeneous medium B ; in other
word the CPA implies 〈ψ0〉 = 0 or 〈ψ1〉 = 0 equivalently. The
incoming field is independent of the position of inclusion,
therefore 〈ψ0〉 = ψi + 〈ψs〉 and the CPA implies:

〈ψs〉 = −ψi (3)

If an inclusion is placed at M, 〈ψs〉 + ψi is nothing else than
the exciting field used in literatures [6].

3.2 Ensemble average

A configuration is defined by the set of all positions of
inclusion ΛN =

{
�r01, �r02, . . . , �r0N

}
according to a fixed frame.

The configuration is governed by the probability density p(ΛN)
and the ensemble average is defined by

〈ψs〉 =

∫
...

∫
ψs(ΛN) p(ΛN) d �r0N . . . d �r02d �r01

where the integrations are performed in all the domain except
in a circular disc CM of radius a centered at the observation
point M. Otherwise the field would be an internal field.
The total scattered field is ψs =

∑
j ψ

j
s. After ensemble av-

erage, the contributions of an inclusion is indistinguishable
from the others. Therefore

〈
ψ1

s

〉
=

〈
ψk�1

s

〉
and 〈ψs〉 = N

〈
ψ1

s

〉
if s1 is chosen as a representative inclusion.
As presented by [7], p(ΛN) = p( �r02 . . . �r0N | �r01)p( �r01) where
p( �r01) is the probability to find s1 ar �r01 and p( �r02 . . . �r0N | �r01)
is the density probability to find the other inclusions s j at r0 j

( j � 1) if the position of s1 is known. This later probability
density can be decomposed as

p( �r02 . . . �r0N | �r01) = p( �r03 . . . �r0N | �r02, �r01)p( �r02| �r01)

where p( �r02| �r01) is the conditional probability to find s2 at�r02

knowing the position of s1. It is then useful to describe the
following hierarchy〈

ψ1
s

〉
=

∫ 〈
ψ1

s

〉
1

p( �r01) d �r01〈
ψ1

s

〉
1
=

∫ 〈
ψ1

s

〉
12

p( �r02| �r01) d �r02〈
ψ1

s

〉
12
=

∫
...

∫
ψ1

s(ΛN) p(�r03...�r0N |�r01,�r02) d�r03...d�rN

(4)

If the probability densities are supposed uniform:

p( �r01) ≈
1
V
, p( �r02| �r01) ≈

1
V
H(r12 − 2a) = p(r12) (5)

where V = N/n0 is the surface of the integration domain,
H is the Heaviside step function and n0 is the number of
inclusion per unit area (or density of inclusion). In particular
the CPA Eq.3 is at the first order of integration:

n0

∫ 〈
ψ1

s

〉
1

d �r01 = −ψi

4 Independent scattering

4.1 Discussion on its formulation

On the previous equation the objective is to give the more
realistic sense to

〈
ψ1

s

〉
1
. In the traditional form of Indepen-

dent Scattering Approximation (ISA) proposed by Foldy and

other, one consider that the scattering pattern f (θ) =
∑

n zneinθ

of the inclusion is not perturbed by ensemble average. More-
over the incoming field is replaced by an exciting field having
an effective wave number K. Consider the case of incoming
plane wave propagating along the �x direction and probing s1

placed at x01, the radiation far from s1 is〈
ψ1

s

〉
1
= eiKx01 f (θ) H0(kr1) (6)

The radial dependence of the scattering is governed by k.
This is mainly motivated by the Sommerfeld radiation con-
dition satisfied by ψ1 before averaging over the position of
all the inclusion except s1. Moreover this formulation can be
taken into question. First, Foldy approach leads to searching
an exciting field solution of (Δ+K2)ψ = 0, where K is the ef-
fective wave number. Second, it looks reasonable to suppose
that the scattering must be modified along the radial direc-
tion after this ensemble average: the global effect of other in-
clusions placed between s1 and the observation point would
induce additional dispersion and attenuation (Im(K) ≤ 0). In
order to take into account this remarks, we propose to replace
the previous equation by〈

ψ1
s

〉
1
= eikx01 f (θ) H0(Kr1) (7)

where the effect of translation of s1 induces simply a phase
difference governed by k. According to this methods, the
exciting field is considered to be the incoming wave in the
first order of approximation. This proposed version of ISA
in Eq.(7) is called ISA’ in the following. If ISA’ consists
to suppose that s1 is insonified only by the incoming wave〈
ψ1

s

〉
12

is consequently independent of the position of s2 and
by construction:

〈
ψ1

s

〉
1
=

∫ 〈
ψ1

s

〉
12

p(r12)d�r02 =
〈
ψ1

s

〉
12

the quasi-crystalline approximation (QCA) [8] is verified.
The contribution of other inclusions will be taken into ac-
count for methods using higher order where 〈ψs〉12 depends
on the position of s2.

4.2 Effective wavenumber

We fixe the reference frame at the point M where the CPA
has to be verified. In this frame, the incoming field is simply
c0
0 because φn(k�0) = δn. Suppose that s1 is placed at�r01 in the

reference frame. Its scattering measured at M and obtained
after averaging all other inclusions is:〈

ψ1
s

〉
1
=

∑
n

〈
a1

n

〉
1
φ̂n(K �r10)

where a j
n denotes a j

n(s j) in the following.
If ISA’ is used, the exciting field is the incoming field:

〈
a1

〉
1
≡

Zc1
= ZS 10c0 where the transformation S 10 is defined by

(S 10)nm = φn−m(k�r10) = φm−n(k�r01) according to Graf’s theo-
rem [5]. Then, the CPA supposes that K satisfies:

n0

∑
n

∫
(ZS 10c0)nφ̂n(K �r10) d�r01 = −c0

0 (8)

We have φ̂n(K �r10) = (−1)nφ̂n(K �r01) and the integral is:

(−1)nzn

∑
m

c0
m

∫
φm−n(k �r01)φ̂n(K �r01) d�r01 (9)
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Using Green Theorem, the surface integral can be replaced
by a contour integration:∫

B

φm−n(k�r)φ̂n(K�r) d�r =∫
∂B

φ̂n(K�r)∂�nφm−n(k�r) − φm−n(k�r)∂�nφ̂n(K�r)
K2 − k2

d�r
(10)

what generalize the case of ([7]-Eq.(67)) for an incoming
plane wave.
Here B is defined by r > a as mentioned in section 3.2. The
contribution from infinity is null due to the radial attenuation
imposed by φ̂n(K�r). Therefor ∂B is mainly ∂CM the contour
of circleCM with radius a. In the reference frame the external
normal is �n = −�er. Using ∂�nφn(k�r) = −kJ′n(kr)einθ at r = a
and the orthogonality relation

∫
eimθdθ = 2πδm the previous

equation gives after simplification∫
B

φm−n(k �r01)φ̂n(K�r01) d�r01 = 2πa2(−1)nNn(k,K)δm

with:

Nn(k,K) =
kaJ′n(ka)Hn(Ka) − KaJn(ka)H′n(Ka)

(ka)2 − (Ka)2

Remembering ϕ = n0πa2 and simplify by c0
0, the CPA is:

2ϕ
∑

n

znNn(k,K) = −1 (11)

The effective wavenumber must satisfy this equation. An ap-
proximate form can be found if Ka is close enough from ka:
Ka = ka + ε with |ε| 
 1. Taylor expansion to the first order
of the function Hn(Ka) and H′n(Ka) in the numerator of N
gives:

Nn(k,K) ≈ −
2i
π

1
(ka)2 − (Ka)2

and then the traditional form of the ISA is obtained:

K2
= k2 − 4in0

∑
n

zn

Finally the new formulation of ISA’ does not introduce par-
ticular effect and is efficient with the CPA if the hole correc-
tion formulated in section 3.2 is respected. The method has
been developed without care on the form and directivity of
the incoming wave, the general expression of the effective
wave number is independent of source.

5 Second order

5.1 Scattering by two inclusions

First consider the scattering problem Eq.(2) for two in-
clusions. It reduces to solve the system:

a1
= Z

(
c1
+ Ŝ 12a2

)
a2
= Z

(
c2
+ Ŝ 21a1

) (12)

Hence a1 is solution of:

(I−ZŜ 12ZŜ 21)a1
= Z(I+Ŝ 12ZS 21)c1

= Zc1
+ZŜ 12Zc2 (13)

The contribution of each terms can be highlighted by consid-
ering the far field interaction where kr12 � 1. In this case,

the asymptotic form of Bessel functions for large argument
can be used:

Hn(z) ≈ H0(z)e−in π
2 , Jn(z) ≈ H0(z)

e−in π
2 + ein π

2

2
, z� 1

Introducing these hypotheses gives the following forms for
the two main matrices:

(ZŜ 12ZŜ 21)nm = H2
0(kr12)znein(− π

2−θ12)eim(− π
2 +θ12) f (π)

(ZŜ 12Z)nm = H0(kr12)zne−in( π2 +θ12)zmeim( π2 +θ12)

where f (π) =
∑

p(−1)pzp is the backscattering contribution
of the far field pattern.
Consider an incoming plane wave with direction θi. The in-
coming field at any point M can be decomposed:

ψi(M) = ψ1
i eikr1 cos (θ1−θi)) = ψ1

i

∑
n

inJn(kr)ein(θ1−θi)

where ψ1
i is the incoming field at the center of s1. In other

word we have c1
n = ψ

1
i ein( π2−θi) and c2

m = ψ
2
i eim( π2−θi). It is then

possible to express each vectors:(
ZŜ 12ZŜ 21a1

)
n
= H2

0(kr12) f (π)znein(− π
2 −θ12)

∑
m

a1
meim(− π

2 +θ12)

(
Zc1

)
n
= ψ1

i znein( π2 −θi)(
ZŜ 12Zc2

)
n
= H0(kr12)zne−in( π2 +θ12)ψ2

i

∑
m

zmeim(π+θ12−θi)

The far field contribution of the inclusion s1 is

ψ1
s ∼ H0(kr1)F (θ1) with F (θ1) =

∑
n

anein(θ1−
π
2 )

Strictly speaking, F is not the scattering pattern f as it de-
pends on the probing wave. Moreover it gives the same in-
formations.
Multiply each terms of Eq.(13) by ein(− π

2 +θ1) and sum over n
give: ∑

n

a1
nein(θ1−

π
2 )
= F (θ1)∑

n

(
ZŜ 12ZŜ 21a1

)
n

ein(θ1−
π
2 )
= H2

0(kr12) f (π) f (θ1 − θ21)F (θ12)∑
n

(
Z1c1

)
n

ein(θ1−
π
2 )
= f (θ1 − θi)ψ

1
i∑

n

(
ZŜ 12Zc2

)
n

ein(θ1−
π
2 )
= H0(kr12) f (θ1 − θ21) f (θ21 − θi)ψ2

i

A simple form of the scattering pattern is then solution of:

F (θ1) − H2
0(kr12) f (π) f (θ1 − θ21)F (θ12) =

f (θ1 − θi)ψ1
i + H0(kr12) f (θ1 − θ21) f (θ21 − θi)ψ2

i

For observation along s2 direction θ1 = θ12 = θ21 + π:

F (θ12) =
f (θ12 − θi)ψ1

i + H0(kr12) f (π) f (θ21 − θi)ψ2
i

1 − H2
0(kr12) f (π)2

And after rearrangement:

F (θ1) = f (θ1 − θi)ψ1
i + . . .

H0(kr12) f (θ1 − θ21)
f (θ21 − θi)ψ2

i + H0(kr12) f (π) f (θ12 − θi)ψ1
i

1 − H2
0(kr12) f 2(π)

Of course if the O(H2
0(kr12)) terms are neglected we observe

a more intuitive from of the far field contribution:

F (θ1) = f (θ1 − θi)ψ1
i + H0(kr12) f (θ1 − θ21) f (θ21 − θi)ψ2

i
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The far field pattern is obtained by a weak coupling with
the second inclusion: f and H0 acts as an angular and ra-
dial transfer function. Neglecting O(H2

0(kr12)) is equivalent
to neglect ZŜ 12ZŜ 21 in Eq.(13). In other words ZŜ 12ZŜ 21

is mainly a near field contribution. As shown in figure 1 the
contribution of ZŜ 12ZŜ 21 looks far from negligible for the
near field contribution.
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Figure 1: F evaluated by solving Eq.(13). Exact form (Fex)
and obtained by neglecting ZŜ 12ZŜ 21 (Fapp), exact form for

a single inclusion (f). Left: rigid inclusion; right: small
contrast (ρ1, c1) = 3

4 (ρ, c). Incidence along �x and θ12 = π/3.
Case with ka = 3 and kr12 = 2ka

5.2 Ensemble average

For N inclusions the scattering amplitude is given in Eq.(2).
Ensemble average on all inclusions except s1 gives:

〈
a1

〉
1
= Z

⎛⎜⎜⎜⎜⎜⎜⎝c1
+

∑
k�1

∫
Ŝ

1k 〈
ak

〉
1k

p(r1k) d�r1k

⎞⎟⎟⎟⎟⎟⎟⎠
Here Ŝi j is the same as Ŝ i j but evaluated with K in place of k
because Graf’s Theorem is applied on:〈

ψ1
s

〉
1
=

∑
n

〈
a1

n

〉
1
φ̂n(K�r1)

The contribution of sk�1 are indistinguishable and are associ-
ated to N − 1 ≈ N representative inclusion s2. Hence:

〈
a1

〉
1
= Z

(
c1
+ N

∫
Ŝ12

〈
a2

〉
12

p(r12) d�r12

)
(14)

or equivalently:〈
a1

〉
12
= Z

(
c1
+ N Ŝ12

〈
a2

〉
12

)
(15)

5.3 Linton-Martin closure assumption

In order to solve the previous equation it is necessary to
have a relation between

〈
a1

〉
1
and

〈
a2

〉
12

in Eq.(14) or
〈
a1

〉
12

and
〈
a2

〉
12

in Eq.(15).
The Linton-Martin approximation [7] is based on the QCA
where we suppose 〈

a2
〉
12
≈ S 21

〈
a1

〉
1

according to the ISA. The objective is then to solve:(
I − N

∫
Ŝ12ZS 21 p(r12) d�r12

) 〈
a1

〉
1
= Zc1 (16)

In fact the dispersion solution is found supposing no probing
wave: c1 ≡ 0 looking for non trivial solution of the previous
equation. This can be made by defining K(ω) solution of

det

(
I − N

∫
Ŝ12ZS 21 p(r12) d�r12

)
= 0 (17)

5.4 Two inclusions - closure assumptions

Moreover, according to Eq.(2) it is possible to express the
contribution of

〈
a2

〉
12

:

Z

⎛⎜⎜⎜⎜⎜⎜⎝c2
+ Ŝ21

〈
a1

〉
12
+

∑
k�(1,2)

∫
Ŝ2k

〈
ak

〉
12k

p(�r0k|�r01,�r02)d�r0k

⎞⎟⎟⎟⎟⎟⎟⎠
again contribution of sk�(1,2) are indistinguishable and can be
attributed to N − 2 ≈ N representative inclusion s3 to obtain

〈
a2

〉
12
=Z

(
c2
+Ŝ21

〈
a1

〉
12
+ N

∫
Ŝ23

〈
a3

〉
123

p(�r03|�r01,�r02)d�r03

)

If the contribution of
〈
a3

〉
123

is supposed null, the coupling
between three inclusions is neglected, but the pair coupling
between s2 and s1 is fully represented by:〈

a2
〉
12
= Z

(
c2
+ Ŝ21

〈
a1

〉
12

)
Introducing this relation in Eq.(14) gives a more complete
form of the second order ensemble average, where the con-
tribution of

〈
a2

〉
12

has not been lowered by QCA:

(I − N ZŜ12ZŜ21)
〈
a1

〉
12
= Z(I + N Ŝ12ZS 21)c1

If one consider c1 ≡ 0, the dispersion relation is found to be
solution of

det

(
I − N

∫
Ŝ12ZŜ21 p(r12) d�r12

)
= 0 (18)

An alternative is to compute
〈
a1

〉
1

from the previous equa-
tion. Numerically, this can be done by left-multiply the right
hand side by (I−N ZŜ12ZŜ21)−1 then integrating the obtained
matrix. But this matrix is ill conditioned and integration is
time consuming.
An alternative is to suppose that

〈
a1

〉
1
is solution of:

(I − N Z 〈B〉1)
〈
a1

〉
1
= Z (I + N 〈D〉1) c1 (19)

with
〈B〉1 =

∫
Ŝ12ZŜ21 p(r12)d�r2

〈D〉1 =
∫

Ŝ12ZS 21 p(r12)d�r2

This method supposes that
〈
a1

〉
12

is not affected by integra-
tion. And QCA is replaced by the following closure assump-
tion: 〈

a1
〉
12
≈

〈
a1

〉
1

without imposing a particular form of
〈
a1

〉
1
or

〈
a2

〉
1
.

The section 5.1 gives an other point of view for comparing
the LM-formulation Eq.(16) and the proposed one Eq.(19):
with Eq.(19) the near field coupling looks more accurate.

5.5 Analytical integration

In order to give an explicit form of
〈
a1

〉
1
, 〈D〉1 and 〈B〉1

have to been evaluated first.
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5.5.1 Calculation of 〈D〉1

(〈D〉1)nm =

∑
p

zp(−1)p−m
∫
B\C1

φ̂n−p(Kr12)φp−m(kr12)d�r12

According to Eq.(10) the integration is performed on ∂C1 of
radius 2a and gives:

8πa2(−1)p−nNn−p(2k, 2K)δnm

The matrix 〈D〉1 is diagonal with a general term

(〈D〉1)nn = 8πa2
∑

p

zpNn−p(2k, 2K)

5.5.2 Calculation of 〈B〉1

(〈B〉1)nm =

∑
p

zp(−1)p−n
∫
B\C1

φ̂n−p(Kr12)φ̂p−m(Kr12)d�r12

Green Therorem can’t be used because the argument of the
Bessel functions are the same. Integration along θ12 gives
n = m and the matrix is diagonal with nth term:

(〈B〉1)nn = 2π
∑

p

zp

∫ ∞

2a
Hn−p(Kr12)Hn−p(Kr12)dr12

Using [9]-eq.10.22.5 the integral is 2a2Pn−p(2K) with

Pn(K) = H2
n(Ka) − Hn−1(Ka)Hn+1(Ka)

Hence
(〈B〉1)nn = 4πa2

∑
p

zpPn−p(2K)

5.5.3 Calculation of
〈
a1

〉
1
and

〈
a1

〉
Because matrix 〈B〉1 and 〈D〉1 are diagonal

〈
a1

〉
1

is sim-
ply: 〈

a1
〉
1
= GZc1

where G is the diagonal matrix:

(G)nn =
1 + 8ϕ

∑
p zpNn−p(2k, 2K)

1 − 4ϕ
∑

p zpPn−p(2K)

As G is independent of the position of s1, the integration over
all the positions of s1 in B\CM gives similar result than in
section 4.2. We obtain:

2ϕ
∑

n

zn
1 + 8ϕ

∑
p zpNn−p(2k, 2K)

1 − 4ϕ
∑

p zpPn−p(2K)
Nn(k,K) = −1 (20)

It is a proposition of implicit solution of K for a second order
model.

6 Conclusion

The proposed formulation of the multiple scattering prob-
lem is consistent with the Foldy approximation. At higher
order this formulation induces a reformulation of the closure
assumption. Among the various solutions the comparison
with the 2-inclusions problem supposes that Linton-Martin
formulation is based on weak coupling between two repre-
sentative inclusions. Current numerical investigations are
performed in order to give quantitative comparison.
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