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The human response to railway noise has been well researched; however, there is a need to further research the 
human response to railway vibration, freight in particular. To facilitate this, two algorithms have been 
constructed with the aim of sorting unknown train vibration signals into freight and passenger train categories so 
that they can be further analysed. 307 known train vibration signals measured close to the railway were analysed 
to determine which signal properties, if any, are identifiably different for freight and passenger train vibration 
signals. These data were collected within the Defra funded UK study “Human Response to Vibration in 
Residential Environments” conducted by the University of Salford. Several signal properties were found to be 
statistically significantly different for freight and passenger train vibration signals, all of which relate either to 
the duration of the signal event or its frequency content. These differences were used to successfully create two 
algorithms that are capable of sorting unknown train signals into freight and passenger train categories at a 
relatively high level of accuracy. The methodology used in creating the algorithms, their level of accuracy and 
recommendations for their use are presented in this paper. 

1 Introduction 

European rail operators intend to increase their market 
share of goods traffic from 8% in 2001 to 15% in 2020 and 
so will be relying much more heavily on railway freight 
transport [1]. Research has shown that increasing levels of 
transport noise and vibration can induce annoyance and 
sleep disturbance [2,3]. In addition, it has been shown that 
annoyance due to vibration is higher at night and that 
annoyance reactions due to sound are more frequent during 
evenings and night-time, when freight traffic tends to be 
more prevalent [4,5]. There is therefore a need to develop 
measures to ensure acceptable levels of noise and vibration, 
in order to minimise the level of annoyance and sleep 
disturbance experienced by residents located in the vicinity 
of freight railway lines. 

The University of Salford has recently completed a 
research project funded by the Department for 
Environment, Food and Rural Affairs (Defra, UK), which 
was successful in determining exposure-response 
relationships between different vibration sources and local 
residents [6]. Detailed analysis of the extensive database of 
case studies, which comprise face-to-face interviews and 
vibration measurements, will be extremely useful in 
developing research for the EU FP7 Cargovibes project, 
which aims to facilitate the expansion of freight traffic on 
rail. However, vibration measurements were taken over a 
period of 24 hours, during which time there were many 
train passes, and no attempt was made to discriminate 
between different types of passenger trains and freight 
trains and hence there is currently no way to investigate the 
different responses that freight and passenger trains may 
elicit. It would be beneficial to be able to identify freight 
train signals in the Defra database, and determine a 
response relationship specific to freight train vibration, so 
that the effect of a potential increase in vibration due to 
freight traffic can be better understood. 

Therefore, the objectives of the current research are to 
investigate the differences in the vibration signals caused 
by passenger trains and freight trains, in an attempt to 
determine distinguishing factors of vibrations caused by 
freight trains in particular. These distinguishing signal 
properties are used to construct an algorithm that is able to 
sort unknown train vibration signals into freight and 
passenger train categories for further analysis. An event 
identification algorithm has already been written as part of 
the Defra funded project and it could be used in conjunction 
with the results of the current research to quickly and 
automatically identify freight train vibration signals in the 
existing database. 

  

2 Data Extraction and Analysis 

2.1 The Existing Defra Database 

The work in this report is based on existing 
measurements taken as part of the Defra funded research 
project at the University of Salford. The vibration 
measurement protocol for the project involved long term 
monitoring at external positions, along with synchronised 
short term measurements taken within dwellings. The 
transmissibility calculated between these pairs of 
measurement positions allowed the estimation of 24-hour 
vibration acceleration time histories within dwellings. 

The vibration measurements were performed in the field 
using Guralp CMG-5TD strong motion accelerometers with 
a 100 Hz low pass filter. These measurement devices 
consist of a tri-axial accelerometer and a digitiser in a self-
contained unit. The device has two key properties that made 
it ideal for the required measurements, one being the low 
noise floor of the instrument coupled with its 24-bit 
digitiser, providing a dynamic range that is large enough to 
cover the required range of vibration magnitudes, 
eliminating the need for the operator to continually adjust 
its sensitivity and avoiding the potential of over or under 
loading due to operator error. The other relevant feature of 
the Guralp CMG-5TD units is their ability to be time 
synchronized via the Global Positioning System (GPS), 
allowing phase locked, full time history measurements to be 
taken without extensive cabling between instruments. 

While the internal measurements were being taken, the 
operators noted any train passes that occurred during the 
measurement period on a handwritten log. In most cases the 
time of the event, and the type of train, were noted. 

Using this approach, 149 long term measurements were 
conducted along with 522 short term internal 
measurements. The high rate of success in obtaining 
internal measurements has the benefit of eliminating 
uncertainties due to interpolation and extrapolation of data. 

 
2.2 Data Extraction 

The first step in the current work was to create a small 
subset of known train event signals for analysis from the 
Defra database. This subset was drawn from periods of the 
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long term external vibration measurements in which details 
of the type of train pass-bys were recorded by the operator 
conducting the measurements. Freight train events were 
found to be much rarer than passenger train events because 
they tend to occur more regularly at night and all of the 
periods in which the operators logged the train pass-bys 
were during the day. Therefore, in order to obtain as many 
freight signals as possible, the above data extraction was 
repeated for every measurement log that contained at least 
one freight train event. This resulted in 307 total events, 53 
of which are freight train events extracted from 58 
measurement logs spread over 8 sites.  

 
2.3 Signal Property Analysis 

Once all of the train events that were successfully 
identified were manually sorted and categorised, each 
vibration signal was analysed to determine its signal 
properties. A Matlab code was written so that all of the 
vibration signals could be read in turn and several signal 
properties were calculated for each vibration signal.  

A short and a long envelope, defined by the 3dB and  
10dB downpoints of the signal respectively, were defined 
for each event signal (dB re 1 × 10-6 m s-2). To maintain 
consistency with previous work, all properties were 
calculated using the 10dB signal envelope [6]. Table 1 
shows a summary of the signal properties calculated for 
each event signal. x(n) is the acceleration time series, N is 
the number of samples in the series, T is the duration of the 
event in seconds, f(m) is the centre frequency of bin m and 
xf(m) is the magnitude of the signal in bin m. 

Table 1:  Summary of calculated signal properties 
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To determine if the signal properties of freight trains are 
statistically different from those of passenger trains, it is 
necessary to perform some statistical analysis. A suitable 
statistical test to use for this purpose is the Student’s t-test. 
In particular, since the two samples being compared are 
independent and do not have the same variance, the t-test 
will be an independent two sample t-test assuming unequal 
variance. The mean signal properties that were found to be 
significantly different at the 99% confidence level, in the 
vertical plane and/or both horizontal planes, are the 3dB 
and 10dB envelope lengths, the Vibration Exposure Level, 
the Vibration Dose Value, the Kurtosis in the time domain 
and the standard deviation, Kurtosis and Skewness in the 
frequency domain. 

All of the signal properties that were found to be 
significantly different relate either to the duration of the 
signal event or its frequency content. This is not a 
surprising result, since freight trains tend to have longer 
pass-bys, resulting in higher Vibration Exposure Levels and 
Vibration Dose Values, and have different frequency 
content than passenger trains [6]. 

3 The Categorisation Algorithms 

3.1 The Principles of the Algorithms 

Both algorithms were coded entirely in Matlab using a 
training/testing method. This is a method whereby a set of 
unknown test signals is analysed and then separated into 
categories (i.e. freight trains and passenger trains) by 
calculating certain properties of each signal in the test set 
and comparing these to the same properties of known 
examples of freight and passenger train signals that make 
up a training set. Since only the properties of the signals 
that are different between freight and passenger trains are of 
interest in these algorithms, only properties that were found 
to have statistically different means at the 99% confidence 
level were calculated.  

Two different methods were used when comparing the 
training and test data. In one algorithm, the signal 
properties of each test signal are compared to the mean 
values of all the training freight and passenger train signals. 
In the other method, a binary probit model is used to predict 
whether or not a test signal is more like a freight or 
passenger train signal. The steps taken by both algorithms 
to categorise unknown signals are as follows: 

• Calculate signal properties of known training 
signals in the training set to determine typical 
values for freight and passenger trains 

• Calculate the same signal properties for unknown 
signals in the test set 

• For each tested signal, determine which of its signal 
properties are more like freight train signal 
properties and which are more like passenger train 
properties (each algorithm uses a different method 
for this step) 

• Decide whether a signal should be categorised as a 
freight or passenger train signal by the proportion 
of its signal properties that are deemed more similar 
to freight train signal properties 
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3.2 Categorisation Using Mean Value 
Comparison 

For this version of the algorithm, each tested signal is 
categorised as either a freight train or a passenger train by 
comparing its signal properties to the mean value of the 
known passenger and freight train signals in the training 
set. The first step is therefore to calculate the properties of 
each signal in the training set and determine a mean value 
for each property for passenger and freight trains. 

Next, the same properties calculated for each training 
signal are calculated for each of the unknown test signals. 
For each test signal in turn, each calculated property is 
compared to the mean value of that property for freight 
trains and for passenger trains, determined from the training 
set. If the property of the signal is closer to the mean of the 
freight train signals, it is assigned a value of 1 and if the 
property is closer to the mean of the passenger train signal 
it is assigned a value of 0. The assigned value for each 
property is then summed for each train signal and converted 
to a percentage score, resulting in a value between 0% 
(when all calculated properties are closer to the passenger 
train mean properties) and 100% (when all calculated 
properties are closer to the freight train mean properties), 
with most signals having a value somewhere in between.  

The final step is to sort each signal into the freight train 
or passenger train category. All of the signals that have a 
percentage score above a certain categorisation cut-off 
value (e.g. 50%) are sorted into the freight train category 
and all other signals are sorted into the passenger train 
category.  

 
3.3 Categorisation using a Binary Probit 
Model 

For this version of the algorithm, a binary probit model 
is constructed for each signal property, with a resulting 
predicted probability that a signal is a freight train signal as 
a function of the signal property [7].  

Signal properties are calculated for each vibration signal 
in the training set, after which a binary probit model is 
derived. The binary probit model allows the regression of a 
continuous independent variable on a binary dependent 
variable to be calculated. In this case, the continuous 
variable is one of the signal properties calculated for each 
vibration signal and the binary variable is whether the 
signal comes from a freight train (1) or a passenger train 
(0).  

Figure 1 shows the application of the binary probit 
model to the 3 dB envelope length in the vertical plane. The 
passenger train signals (Pr(y = 1) = 0) are clustered at the 
lower end of the duration spectrum than the freight train 
signals (Pr(y = 1) = 1), which are more spread out and have 
a greater proportion at the higher end of the spectrum.  

 

 

Figure 1: Example of binary probit model for 3 dB 
envelope length in the vertical plane 

Next, a binary probit cut-off value (e.g. Pr(y = 1) = 0.5) 
was defined above which a signal property is determined to 
be more likely to belong to a freight train than a passenger 
train. If a signal property is such that the probability 
according to the binary probit model is above this critical 
value, it is assigned a value of 1. Otherwise, it will be 
assigned a value of 0. These values are then summed in the 
same way as for the comparison of means algorithm, and a 
percentage score is determined as before. Again, the final 
step is to categorise the test signals into freight train signals 
and passenger train signals, by sorting all the vibration 
signals that have a percentage score above a specified 
categorisation cut-off value (e.g. 50%) into the freight train 
category and the rest into the passenger train category. As 
with the comparison of means algorithm, the definition of 
the categorisation cut-off value will have an effect on the 
accuracy of the algorithm. In addition, the definition of the 
binary probit cut-off value will have an effect on the 
algorithm’s accuracy. 

 
3.4 Investigating the Critical Value for 
the Comparison of Means Algorithm 

For each signal tested in the comparison of means 
algorithm, the percentage of calculated signal properties 
that are deemed more similar to freight train signals than 
passenger train signals is calculated. A categorisation cut-
off value for this percentage is then defined above which 
signals are classified as freight train signals, and below 
which signals are classified as passenger trains. The 
accuracy of the algorithm is therefore dependent on this 
critical value. Figure 2 shows a plot of the accuracy of the 
algorithm as a function of the categorisation cut-off value. 
The total accuracy is defined as the percentage of all tested 
signals (both freight and passenger) correctly categorised, 
the freight train accuracy is the percentage of all tested 
freight signals correctly categorised and the passenger train 
accuracy is the percentage of all tested passenger train 
signals correctly categorised.  
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Figure 2: Percentage accuracy of comparison of means 
algorithm as a function of the categorisation cut-off value  

Clearly, the categorisation cut-off value has a very 
significant effect on the accuracy of the algorithm, with the 
percentage of freight trains correctly identified being very 
high at low categorisation cut-off values, whilst the 
percentage of passenger trains correctly identified is 
extremely low, and vice-versa. The highest overall accuracy 
is therefore somewhere in between, at a categorisation cut-
off of approximately 60%. At this cut-off value, the overall 
accuracy is approximately 85% and the accuracy for 
passenger and freight trains is approximately 95% and 50% 
respectively. In this case, the lower percentage accuracy for 
freight train identification does not have such a significant 
effect on the overall percentage accuracy, since there are 
relatively fewer freight trains than passenger trains in the 
training and test sets. Depending on the application, it may 
be more important for the algorithm to have similar 
accuracy for both freight train and passenger trains. In this 
case, a cut-off value of approximately 40% would be more 
appropriate. Although this gives a lower overall percentage 
accuracy, it has the advantage of the overall, freight and 
passenger train accuracy all being approximately the same 
at around 70%, making the algorithm much more 
consistent. 

 
3.5 Investigating the Critical Values for 
the Binary Probit Model Algorithm 

In the binary probit model algorithm, for each signal 
property, a binary probit model is created. A critical point 
in this model is then defined above which signal properties 
will be classified as similar to freight train signal properties. 
Then, as with the comparison of means algorithm, a 
categorisation cut-off value is defined above which signals 
are categorised as freight train signals. Figure 3 shows a 
plot of the percentage accuracy of passenger train signals 
that are correctly identified, as a function of the 
categorisation cut-off value and the probit cut-off value.  

The percentage of passenger trains correctly identified 
is 0% when both the categorisation cut-off value and the 
probit cut-off value are 0. This is because all of the signal 
properties will be found to be more similar to freight train 
signals, since they will have values that are above 0 on the 
probit model. In addition, all of the signals will be 
classified as freight train signals because they will have 
percentage scores equal to or higher than 0%. In contrast, 
when the categorisation and cut-off values are at their 
maximum of 100% and 1, the percentage of passenger 
trains correctly identified is 100%. For any given 
categorisation cut-off value, the percentage of passenger 

trains correctly identified increases with the probit cut-off 
value, since higher probit cut-off values mean that fewer 
signal properties are assumed to be similar to freight train 
signal properties. Similarly, for any given probit cut-off 
value, the percentage of passenger trains correctly 
identified increases with increasing categorisation cut-off 
value, since a higher categorisation cut-off value means that 
a signal must have more properties that are similar to 
freight train signals for it to be classified as a freight train. 
Figure 4 shows the percentage of freight trains correctly 
identified as a function of the cut-off values.  

 

Figure 3: Percentage of passenger trains correctly identified 
by the binary probit algorithm, as a function of the 

categorisation cut-off value and the probit cut-off value 

 

Figure 4: Percentage of freight trains correctly identified by 
the binary probit algorithm, as a function of the 

categorisation cut-off value and the probit cut-off value 

The percentage of correctly identified freight trains is at 
a maximum of 100% when the categorisation cut-off value 
and probit cut-off value are both at their lowest value of 0% 
and 0. This is because all signals will have signal properties 
that are greater than the value at which the probit model is 
0. In addition, all signals will be classified as freight trains 
since they will have a categorisation percent score greater 
than 0%. The opposite can be said for the highest 
categorisation cut-off and probit cut-off values of 100% and 
1 respectively, at which the percentage of freight trains 
correctly identified is 0%. The percentage of total trains 
correctly identified can be seen in Figure 5. 
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Figure 5: Percentage of total trains correctly identified by 
the binary probit algorithm, as a function of the 

categorisation cut-off value and the critical probit cut-off 
value 

The highest percentage of total trains correctly 
identified is approximately 85% and occurs when the 
categorisation cut-off value is around 40% and the probit 
cut-off value is around 0.4. However, despite the high 
percentage of total trains correctly identified at these cut-off 
values, the difference between passenger and freight train 
identification accuracy is severe, with their percentage of 
correct identifications being approximately 98% and 30% 
respectively. More consistent identification accuracy occurs 
when the categorisation cut-off value is around 25% and the 
probit cut-off value is around 0.25. At these cut-off values, 
the percentage of total trains, freight trains and passenger 
trains correctly identified are all approximately 80%. As 
with the comparison of means method, this more consistent 
accuracy comes at the cost of decreased overall accuracy.  

4 Conclusions 

The results of the current research have indicated that 
there are indeed signal properties that are significantly 
different for freight and passenger train signal properties. 
The properties that are significantly different depend either 
on the duration of the signal events, or their frequency 
content. Freight trains tend to have envelopes of greater 
duration, and hence have higher Vibration Exposure Levels 
and weighted Vibration Dose Values (in the horizontal 
plane at least). In addition, their Fourier spectra tend to 
have a lower Skewness and Kurtosis than passenger trains, 
meaning that more of the energy lies to the left of the mean 
and that the probability distribution of the Fourier spectra 
are less “peaky” than for passenger trains. These 
significantly different signal properties were successfully 
used to construct two algorithms for categorising unknown 
vibration signals into freight and passenger train categories. 

The two algorithms use slightly different methods to 
categorise the unknown vibration signals, but both use 
similar principles of training using known vibration signals 
before testing the unknown signals. The comparison of 
means method has a lower overall accuracy. For this 
reason, it is recommended that the binary probit model 
algorithm be used, since it has an average accuracy of 
percentage trains correctly categorised of approximately 

80%. Although not present in this paper, an investigation 
into the ratio of sizes of the training and test sets was 
performed. It was found that the binary probit model 
algorithm has a consistent accuracy for training set sizes 
that are at least 10% the size of the signal set to be tested, 
whereas the accuracy of the comparison of means algorithm 
sharply decreases with training sets that are smaller than 
25% of the signal test set size. 

Although neither algorithms are able to accurately 
categorise 100% of the tested signals, the signals that are 
sorted into the wrong category are sorted in this way 
because they have signal properties that are more similar to 
the incorrect category and, therefore, the human response to 
that signal may be the same as if it did actually belong in 
that category. Furthermore, there is potential to improve the 
accuracy of the algorithms by combining the two methods, 
or by further examining the properties of the signals that are 
incorrectly categorised.  

With further work, the accuracy of the algorithms could 
be improved, however, even at its current level of accuracy, 
the binary probit model algorithm may prove extremely 
beneficial for the categorising of unknown vibration 
signals, allowing a greater understanding of the human 
response to specific railway traffic sources. 
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