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Large-Eddy Simulations (LES) of a compressible turbulent channel flow at a Mach number of 0.5 and a friction
Reynolds number of 260 are performed, using explicit low-dissipation and low-dispersion numerical schemes for
spatial derivatives. Eleven simulations are carried out on grids with different mesh spacings in order to study
the grid convergence of turbulence statistics, namely mean and fluctuating streamwise velocity profiles. These
quantities are found to not vary significantly for mesh spacings smaller than 10 and 30 wall units in the spanwise
and streamwise directions, respectively. An additional simulation is performed using a semi-implicit Runge-Kutta
algorithm, developed specifically for wall-bounded flows, in which terms involving wall normal derivatives are
integrated implicitly, while the other terms are integrated explicitly to relax the CFL constraint in the wall normal
direction. The simulations finally provide a numerical database, from which wall pressure and velocity spectra are
computed to give insights into the turbulent structures developing in the flow.

1 Introduction

Since the direct numerical simulation (DNS) by Kim et
al. [1], the fully turbulent channel flow has been widely stu-
died using computations because this configuration enables
universal characteristics of wall turbulence to be studied, whi-
le offering a relative simplicity of implementation compared
to other canonical wall-bounded flows such as the turbulent
boundary layer [2]. However, some intrinsic difficulties of
wall bounded flow remain for numerical simulation. The
dynamics of the flow is indeed strongly influenced by the
dynamics of the small scales developing close to the wall,
which exhibit strong anisotropy and complex interaction me-
chanisms with larger scales. Thus, to properly catch the fea-
tures of wall bounded flows, simulations must ensure a good
resolution of these small scales.

This can be particularly tricky in large eddy simulation
(LES), where scales are not taken into account by the grid
resolution, and must be treated by a subgrid model. If the
small scales mentioned above for wall-bounded flows are
smaller than the mesh spaces, their specific behavior cannot
be well reproduced, and important errors might occur, even
on global features such as the mean velocity profile of the
flow. A general assessment of the grid resolution is more-
over difficult for LES, since many subgrid models exist, and
may have different effects on the resolved scales. For this
reason, a grid convergence study is carried out in the present
study of a turbulent channel flow, in which the LES strategy
relies on the use of a relaxation filter as proposed by Bogey et
al. [3].

Well-resolved LESs allow fine investigation of turbulence
structures developing near the wall. These structures have
been studied for instance by Tomkins & Adrian [4] for bound-
ary layers, and by Jiménez et al. [5] for channel flows. Both
authors investigated the scaling of turbulent motions at dif-
ferent distances to the wall, from the inner layer to the lo-
garithmic region. A study based on LES data has also been
conducted by Bogey et al., who simulated a tripped nozzle
pipe flow [6]. They found that just downstream the nozzle
exit, the azimuthal modes of streamwise velocity scale simi-
larly to the spanwise modes in boundary layers [7].

Wall pressure spectra have also been studied in several
analytical, experimental and numerical investigations over
the last fifty years [8]. Among recent studies, Hu et al. [9]
computed wall pressure spectra using DNS for channel flows
at various Reynolds numbers, and tested different combina-
tions of scaling variables to exhibit similarities between the
different Reynolds number cases.

In the present work, compressible LESs of a turbulent
channel flow are performed. The friction Reynolds number
Reτ = hu f/ν is equal to 260, with h the half width of the

channel, ν the molecular viscosity, and u f the friction velo-
city. The Mach number is equal to 0.5. These simulations
are used to perform a grid convergence study. Once the qua-
lity of grid resolution is assessed, one of the well-resolved
simulations is carried on over a longer time period, allowing
analysis of fine scales in the near wall region, using power
spectra densities of the streamwise velocity and of the wall
pressure.

2 Numerical settings

The LESs are performed by solving the compressible Na-
vier-Stokes equations, using low-dissipation and low-disper-
sion 11-points finite differences for spatial derivatives. Peri-
odic boundary conditions are implemented in the x (stream-
wise) and z (spanwise) directions. In the y (wall normal)
direction, a no-slip boundary condition is imposed. The box
dimensions are Lx × Ly × Lz = 12h × 2h × 6h. The dis-
sipative effects of the subgrid motions are modelled by the
use of an explicit filter of order 6, removing the smallest dis-
cretised scales, while leaving the well-resolved scales nearly
unaffected [3].

The simulations are carried out on Cartesian grids, with
constant mesh spacings in the streamwise and spanwise di-
rections. In the wall normal direction, the mesh spacing is
stretched with a constant expansion rate r. Grid convergence
is carried out by performing simulations on several grids with
decreasing mesh spacings in one direction. Two series of
grids, referred to as Gdz and Gdx, are used to study the grid
convergence in the z and x directions, respectively. For grid
convergence in the y direction (Gdy grids), the mesh spacing
at the wall Δyw is decreased, while the expansion rate r is
slightly increased. The numbers of grid points nx, ny and nz

in the x, y and z directions, respectively, vary between the
different cases, with 87 ≤ nx ≤ 257, 85 ≤ ny ≤ 161 and
129 ≤ nz ≤ 385. Table 1 shows the grid parameters of each
of the cases, in wall units. It can be noted that the parame-
ters of Gdz4 and Gdx4 are identical to those of Gdy3, there-
fore these three cases refer to the same simulation. Parame-
ters from LESs of wall bounded flows with varying Reynolds
numbers from Viazzo et al. [10], Gloerfelt [11] and Schlatter
et al. [12] are also given for the comparison.

Time integration is performed with the explicit fourth-
order Runge-Kutta scheme of Berland et al. [13], at a CFL
number cΔt/Δyw = 0.83, with Δt the time step and c the
speed of sound. An additional simulation is performed on
the Gdy3 grid, using a semi-implicit Runge-Kutta (SIRK)
scheme recently developed by the authors [14]. With this
scheme, the terms involving derivatives in the wall normal
direction are computed implicitly while the other terms are
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computed explicitly. Thus, a higher CFL number can be
reached. For the present configuration, its value is 8.7, which
is ten times higher than the CFL number allowed by the ex-
plicit scheme. However, the SIRK scheme involve a quite
important CPU time per iteration. Consequently, the semi-
implicit simulation is about three times slower than the ex-
plicit one, for the presented case. It must be noted that a
higher Reynolds number case with finer mesh at the wall
should be more favorable to the efficiency of the SIRK scheme.

Table 1: Parameters of the grids used for the grid
convergence study; mesh spacings are given in wall units;
Δx,Δz: mesh spacings in the streamwise and spanwise
directions; Δyw,Δyc: mesh spacings in the wall normal
direction at the wall and at the center of the channel; r:
stretching rate of the mesh in the wall normal direction.

Grids Δx+ Δz+ Δy+c Δy+w r (%)
Gdy1 15 7.5 15 3.7 3.5
Gdy2 15 7.5 15 1.9 4.0
Gdy3 15 7.5 15 0.95 4.4
Gdy4 15 7.5 15 0.47 4.5
Gdz1 15 15 15 0.95 4.4
Gdz2 15 12.5 15 0.95 4.4
Gdz3 15 10 15 0.95 4.4

Gdz4(=Gdy3) 15 7.5 15 0.95 4.4
Gdz5 15 5 15 0.95 4.4
Gdx1 45 7.5 15 0.95 4.4
Gdx2 35 7.5 15 0.95 4.4
Gdx3 30 7.5 15 0.95 4.4

Gdx4(=Gdy3) 15 7.5 15 0.95 4.4
Viazzo et al. [10] 31.4 15.7 51.84 0.88

Gloerfelt [11] 37 14.7 0.98 2
Schlatter et al. [12] 25.3 10.8 14.2 <1

3 Results of the grid convergence study

Profiles of mean and rms streamwise velocities are rep-
resented as a function of the distance to the wall. Figure 1
shows the results obtained with the Gdy grids, in which Δy+w
varies. The profiles of the Gdy3 and Gdy4 simulations are
seen to collapse, for both mean and rms velocities. There-
fore, grid convergence seems to be achieved for Δy+w = 0.95.
It can be noticed that both mean and rms velocities are un-
derestimated by the simulations using coarser resolutions. A
trend can even be established between the peak rms veloc-
ity and the grid resolution: the former increases as the latter
is improved, until grid convergence is reached. The velocity
profiles of the simulation performed with the SIRK scheme
are also plotted. They show good agreement with those from
the explicit simulation carried out on the same grid.

The velocity profiles from the Gdz grids, in which Δz+

varies, are presented on figure 2. They show that grid conver-
gence is obtained in Gdz3 for Δz+ = 10. Unlike the previous
case, the under-resolved simulations overestimate the mean
and rms velocities, although the variations are less important
here.

The results of the Gdx grids, in which Δx+ varies, are fi-
nally plotted on figure 3. The rms velocity profiles of Gdx3
and Gdx4 collapse. Hence, grid convergence is reached for
Δx+ = 30. In the same way as for the Gdz grids, an over-
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Figure 1: Grid convergence in the y direction: (a) mean, and
(b) rms streamwise velocities. Gdy1 (Δy+w = 3.7),

Gdy2 (Δy+w = 1.9), Gdy3 (Δy+w = 0.95),
Gdy4 (Δy+w = 0.47), Gdy3 (Δy+w = 0.95)

using the semi-implicit time integration scheme (SIRK)

estimation of the mean and rms velocities is observed in the
under-resolved cases.

This grid convergence study finally suggests that mini-
mal resolutions of approximately Δx+ = 30, Δy+ = 1 and
Δz+ = 10 are necessary to perform a proper simulation with
the considered LES approach.

4 Spectral analysis of pressure and ve-
locity fluctuations

4.1 Definition

For spectral analysis, the simulation on the Gdy3 grid is
performed further and data are stored over a time period of
T = 38h/Uc, with Uc the centerline velocity. Added to the
time of the grid convergence simulation, this yields a total
duration of simulation equal to Ttotal = 140h/Uc. Every 40th

time step, samples of the pressure at the walls, and of ve-
locity components in wall-parallel planes are collected. The
location of these planes are y+ = 13 and 78 in wall units,
and y/h = 0.05 and 0.3 in outer units. The location of the
first plane corresponds to that of the maximum rms velocity.
Therefore, the database contains time-space samples, noted
q(xi, z j, tn); 1 ≤ i ≤ nx; 1 ≤ j ≤ nz; 1 ≤ n ≤ N, where N =
1300 is the number of time samples. The quantity q repre-
sents either the wall pressure, or a velocity component in one
of the planes where data is collected. For each of these vari-
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Figure 2: Grid convergence in the z direction: (a) mean, and
(b) rms streamwise velocities. Gdz1 (Δz+ = 15),

Gdz2 (Δz+ = 12.5), Gdz3 (Δz+ = 10),
Gdz4 (Δz+ = 7.5), Gdz5 (Δz+ = 5).

ables, a three-dimensional spectrum q̂(kx, kz, ω) is obtained,
as a function of streamwise and spanwise wavenumbers kx

and kz, and angular frequency ω. In order to render the spec-
trum smoother, the database is subdivided into 9 overlapping
time segments of length NS = 260 (TS = 7.7h/Uc). Spec-
tra are then computed on each segment, and averaging over
all the spectra gives the final 3-D spectrum. Power spectral
densities (PSD) are finally obtained as Φqq = q̂q̂∗/(LxLzTS ).

The frequency range is 0.059 ≤ ω+ = ων/u2
f ≤ 7.7, and

the wavenumber ranges are 0.002 ≤ k+x = kxν/u f ≤ 0.26 and
0.004 ≤ k+z = kzν/u f ≤ 0.51.

4.2 Wall pressure spectra

The wall pressure frequency spectrumΦpp, shown on fig-
ure 4, is obtained by integration of the 3-D spectrum over kx

and kz. The axes are in logarithmic scales, and coordinates
are given in wall units. The spectrum has been premulti-
plied by the angular frequency ω to highlight the separation
between high and low frequency regions. For low frequen-
cies, the premultiplied spectrum increases with ω, follow-
ing a power law with an exponent close to 1. The spec-
trum reaches a peak at a non-dimensional angular frequency
ω+ = 0.3, as it was observed by Hu [9] for Reynolds num-
bers between 360 and 1440. Then, for higher frequencies,
the spectrum rapidly decreases. A slope of order ω−4 can be
noticed in a small range of frequenciesω+ ≈ 0.8−1, which is
consistent with the decay in ω−5 observed for Φpp in a num-
ber of boundary layer experiments [16]. The decay becomes
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Figure 3: Grid convergence in the x direction: (a) mean, and
(b) rms streamwise velocities. Gdx1 (Δx+ = 45),

Gdx2 (Δx+ = 35), Gdx3 (Δx+ = 30),
Gdx4 (Δx+ = 15).

sharper for ω+ ≥ 1, which can be attributed to the dissipa-
tive effect of the relaxation filter of the LES, whose cut-off
wavenumber is kx ≈ 2π/(4Δx) in the streamwise direction.
Assuming Taylor hypothesis of frozen turbulence convected
at a speed roughly equal to 0.5Uc, the non-dimensional cut-
off angular frequency is equal to ων/u2

τ ≈ 1.2, which corre-
sponds well to the frequency at which a strong decrease is
observed in the figure.

Finally, a narrow peak can be seen at a frequency ω+ =
0.71, which is very close to the frequency f0 = c/(2h). A
wavenumber-frequency spectrum (not shown here, for the
sake of conciseness) reveals that this peak is located at wave-
numbers equal to zero in the streamwise and spanwise di-
rections, meaning that it is caused by a phenomenon which
has infinite size in the homogeneous directions of the flow.
Therefore, it can be stated that this peak is due to the re-
sonance of an acoustic mode propagating perpendicularly to
the wall.

4.3 Velocity spectra and spanwise structures

Figure 5 shows the power spectral densities of the three
components of velocity in the plane located at y+ = 13, as
functions of the spanwise wavenumber, scaled by the bound-
ary layer thickness δ = 0.9h. The axes are in logarithmic
scales. At low frequencies, the levels found in the spectrum
for the wall-normal velocity are around two orders of mag-
nitude lower than that for the spanwise velocity. The latter
is one order of magnitude lower than that for the streamwise
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Figure 4: Premultiplied power spectral density of the
fluctuating wall pressure scaled by the wall shear stress, as a

function of the angular frequency, scaled by the viscous
time scale

velocity over the whole range of wavenumbers. These differ-
ences indicate the strong anisotropy of the velocity fluctua-
tions in the near-wall region. The spectrum of the streamwise
velocity spreads over a large range of wavenumbers, but the
maximum is found at kzδ ≈ 8. A peak is found also for the
wall normal velocity component, around kzδ ≈ 16. This spa-
tial arrangement is a typical feature of the near-wall streaks,
which consist in regions of high and low streamwise veloc-
ity elongated in the streamwise direction. These structures
are arranged regularly in the spanwise direction, giving the
observed peak in the spanwise spectrum. The streaks are ac-
compagnied by streamwise vortices, whose spanwise separa-
tion is twice smaller than that of the streaks. These vortices
induce the peak visible in the spectrum of the wall normal
velocity.

It can be noticed that the spanwise separation of the streaks
is slightly higher than the size of 100 wall units usually ob-
served in the literature [15]. Indeed, the peak at kzδ ≈ 8
observed for the streamwise velocity corresponds to a wave-
length λ+z = 180. A similar shift has been noted by Tomkins
& Adrian [4] in boundary layers at Reτ = 426, with the most
energetic scales ranging over 200 ≤ λ+z ≤ 400 at y+ = 21.
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Figure 5: Power spectral densities of velocity fluctuations, at
a distance to the wall y+ = 13, as a function of the spanwise

wavenumber scaled by the boundary layer thickness
δ = 0.9h: Φuu, Φvv, Φww.

The spectra obtained from the data further from the wall,
at y+ = 78, or y = 0.3δ in outer units, are presented in the

figure 6. The velocity field is observed to be more isotropic
than previously. Anisotropy however persists at low wave-
numbers, since wall normal components of the velocity are
less energetic than streamwise components for kzδ < 7. The
spectrum is dominated by lower wavenumbers compared to
the near wall spectrum. Indeed, a peak is located at kδ ≈
3, corresponding to a wavelength λz ≈ 2δ. This value is
higher than that provided by Tomkins & Adrian from boun-
dary layer experiments, who measured the most energetic
scales around λz ≈ 0.8δ, at y = 0.2δ [4]. However, the au-
thors pointed out that the largest scales of boundary layers
and channel flows should exhibit different behaviors, since
they are influenced by the geometry of the facility.

Comparison can also be made with the LES results of Bo-
gey et al. for a tripped nozzle pipe flow [6]. Just downstream
of the exit, the azimuthal modes of the streamwise velocity
are noticed to be the most energetic at kθδ/r0 ≈ 7 [7], where
r0 is the pipe radius.
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Figure 6: Power spectral densities of velocity fluctuations, at
a distance to the wall y = 0.3δ, as a function of the spanwise

wavenumber scaled by the boundary layer thickness
δ = 0.9h: Φuu, Φvv, Φww.

Finally, a two dimensional spectrum of the streamwise
velocity at y+ = 13 is shown on figure 7 as a function of the
spanwise and streamwise wavenumbers given in wall units.
It is clearly visible that the energy is concentrated in the low
streamwise wavenumbers, suggesting an important elonga-
tion of the streaks in the streamwise direction. As previ-
ously, dominant componants are found for 0.008 ≤ k+z ≤
0.04, corresponding to 150 ≤ λ+z ≤ 780. The separation of
λ+z = 100 usually observed for the streaks corresponds to
k+z = 0.063. Energetic components can be noticed for this
value of wavenumber, suggesting that streaks with a span-
wise separation of 100 wall units are present, but that they
are less energetic than the dominant ones. It can also be re-
marked that for this value of k+z , the spectrum is spread over
larger values of k+x .

5 Conclusion

A grid convergence study is performed to evaluate the
minimal resolution necessary to obtain a well resolved LES
for a turbulent channel flow at Reτ = 260. It is found that rel-
atively small mesh spacings are necessary, namely Δx+ = 30,
Δy+w = 1 and Δz+ = 10, which however remain higher than
those of a DNS resolution. One of the well resolved simula-
tions is used to compute spectral data on which further ana-
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Figure 7: Power spectral density of the streamwise velocity
fluctuations Φuu, at a distance to the wall y+ = 13, as a

function of the streamwise (kx) and spanwise (kz)
wavenumbers, given in wall units. Two consecutive isolines

represent a magnitude ratio of 2.

lyses are carried out. The wall pressure frequency spectrum
is consistent with that provided by Hu et al. [9]. Near wall
streaks are studied using spanwise spectra of velocity com-
ponents, which show that the streaks have a spanwise separa-
tion of roughly 180 wall units, supporting the observations of
Tomkins & Adrian [4]. Further from the wall, the turbulent
structures exhibit quite high separations, around λz ≈ 2δ.

As a concluding remark, the well resolved LES shows
the ability to produce relieable results, for a lower computa-
tion cost compared to DNS. The resolution of DNS for wall-
bounded flow is indeed about twice as high in each direc-
tion, resulting in a number of grid points 8 times higher than
that of LES. Assuming the use of the same time integration
scheme, computational time is then 16 times longer.
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