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The sound transmission loss (STL) of a panel is often estimated using an infinite plate model. However, some discrepancies 
are found between these predicted results and experimental ones. One of the sources of such discrepancies corresponds to the 
finite extent that is naturally found in real structures. In the present study an analytical waveguide model of sound transmission 
is used to study the effect of finite dimensions in one direction for a panel which is long in the other dimension. The resulting 
model is used to investigate the effect of the finite width on the STL through a simple case of an infinite plate strip with simply 
supported boundary conditions. The results obtained are compared with those for the infinite plate. The resulting analytical 
model can also be used to validate numerical methods such as waveguide FE/BE.  

 

1 Introduction 
Most prediction models for calculating the sound 

transmission loss (STL) of panels were developed with the 
assumption that the panels are infinite in extent. Some of 
them used in practice include the prediction models of 
Beranek & Work [1], Cremer [2] and Sharp [3]. As real 
panels are always bounded, it is instructive to investigate 
the effect of the assumption on the predicted STL. Here, an 
analytical model is developed for an infinite plate strip in 
which the structure is assumed to be infinite in length but 
have a finite width, confined by parallel boundaries. Such 
structures can also be considered as waveguides [4].   

Considering the structure to be finite in the y-direction a 
modal solution can be utilized to describe the structural 
response in terms of y. Meanwhile, for the x-direction, as 
the structure is infinite, a travelling wave solution is 
suitable to describe the dependence of displacement on x. 
By combining these solutions, the response of the plate 
strip is obtained in the wavenumber domain using the 
Fourier transform method.  

The framework for deriving the exact solutions is 
readily available in e.g. [2, 4]. In those references, the 
structural vibration response and its interaction with 
surrounding fluid are discussed from a wave point of view. 
This wave approach has been applied to obtain solutions by 
utilizing a spatial Fourier transform for solving many basic 
cases e.g. beams, plates, pipes (or cylindrical structures), 
etc. Some results have also been found for the case of a 
plate strip. 

The effect of the finite extent is discussed first by 
comparing the STL results of the plate strip and the infinite 
plate for normal and oblique incidence. The STL 
comparison under diffuse sound field excitation is also 
considered to give further insight into consequences of the 
finite extent in structures. 

The resulting solutions can also be used as a benchmark 
solution for such waveguide structures, for example in 
validating waveguide finite element/boundary element 
approaches. In the present paper, example comparisons of 
the analytical and numerical results are provided. 

2 Problem statement 
In this section the sound transmission due to a plane 

acoustic wave acting on a simply supported plate strip 
(waveguide) is considered. The plate strip has width ly in 
the y-direction and is infinite length in the x-direction. The 
incident plane wave impinges on the plate strip with 
elevation angle θ and azimuth angle ϕ as shown in Figure 
2.1. Some simplifying assumptions should be noted as 
follows: 
1. The plate strip is modelled with the thin-plate theory 

and it is set in an infinite rigid baffle.  
2. The thickness of the baffle and the plate is neglected. 

3. Simply supported boundaries are assumed. 
4. The acoustic medium on both sides of the plate is 

assumed to be identical. 
5. The amplitude of the reflected sound pressure is initially 

assumed equal to the incident sound pressure so that the 
blocked pressure field at the plate surface is equal to 
twice the incident pressure. 
 

 

 
 
 
 
 
 
 
 

Figure 2.1. Direction of a plane wave incident on an infinite 
plate strip. 

2.1 Pressure and velocity functions 
The incident sound pressure is considered as a plane 

wave expressed by 
 

 ( , , ) yx z
ik yik x ik z

i ip x y z p e e e−− −=             (1) 
 

where a time harmonic dependence i te ω  is assumed. The 
wavenumbers in x, y and z directions can be defined as: 
 

cos ;  cos ;  sinz x yk k k k k kθ ϕ ϕ= = =      (2) 
 

where sink k θ=  and 2 2 2

x y zk k k k= + +  is given by 

k cω=  with ω  the angular frequency and c  the sound 
velocity. 

The total pressure on the plate surface at 0z =  consists 
of the superposition of the blocked pressure field blp  and 

the radiated pressure field radp  on both sides of the plate. 
The radiated pressure terms will impose a fluid loading at 
the plate surface. The two-dimensional bending wave 
equation subject to the applied acoustic pressure field is 
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The distribution of the pressure ( , )p x y  may be expressed 
by the combination of a Fourier integral and a Fourier 
series. This yields 
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and 
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where m  is an integer corresponding to each mode in the 
y − direction and κ  is the (real) wavenumber in the 
x − direction. 

It may be noted that 
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−∞
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This gives 
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Similarly, because the plate strip is uniform and infinite 

in the x − direction, its transverse velocity may be written 
conveniently in the form  

,
1

( , ) ( ) xik x

y m
m

v x y v y e
∞

−
′

′=

= ∑          (9) 

where m′  is an integer designating each mode of the plate 
vibration and ( ), ( ) siny m m yv y v m y lπ′ ′

′= . This transverse 

velocity is only defined for 0 yy l≤ ≤  and is zero 
otherwise. Subsequently, it can be expressed in terms of an 
infinite set of simple harmonic waves travelling in the 
y − direction, with wavenumber denoted as γ  in order to 

distinguish it from the incident wavenumber yk , as follows 

 , ,

0
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yl
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The solution for , ( )y mV γ′
%  is 
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In order to solve the coupled vibration-radiation 
problem, some boundary conditions must be satisfied, i.e. 
the fluid particle velocity must be equal to the normal plate 
velocity and the fluid particle velocity v  and the pressure 
p  must satisfy Euler’s equation 0i v pωρ = −∇

rr . Hence the 
radiated pressure field, assuming the fluid on both sides is 
the same, is 

1

01
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where 2 2 2

z
k k κ γ= − − . Note that rad radp p− += − .  

Therefore, mA  in Eq.(8) becomes 
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where ( ) ( )m ma aγ γ∗− = , as the modal displacement function 
is real. 

Substituting Eq. (7) and Eq. (9) into Eq. (3), this gives 

( )( )( )
( ) ( )

222 4

1

1

sin sin

x

x

ik x

x y B m
m

ik x

y m y
m

iD
k m l k v e

m y l A e m y l

π
ω

π π

∞
−

′
′=

∞
−

=

′
′− + −

′× =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
(16) 

 
Using the orthogonality of the mode shapes, Eq. (16) can be 
written for a single term in the series; to obtain this, it is 
multiplied with ( )sin ym y lπ  and integrated over the 

width yl  yielding  
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x y B m m
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and substituting mA  from Eq. (15) into Eq. (17) after some 
simplifications, it is found that 
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where 2 2 2

zk k κ γ= − − .  
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2.2 Sound transmission loss 

The radiated sound power of the plate strip per unit 
length in the x − direction 2radW  is given by 
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in which the range of the integration over y  has been 

extended to ±∞  because the form of ( )yV γ%  ensures that 

yv  is zero outside 0 yy l< < . Substituting Eq. (11) and Eq. 
(14) into Eq. (19) with the necessary condition 
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The incident power per unit length for the plate strip can be 
expressed as  

 ( )2

0cos 2inc i yW p l cθ ρ=                  (21) 
 
The transmission coefficient τ  is given by ratio of the 

radiated power to the incident power, which gives 
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The sound transmission loss R  is found from 
 

 1010 logR τ= −       dB            (23) 

3 Results 
In this section, the STL results of a 1 m wide plate strip 

are compared with those of the infinite plate which are 
calculated using formulae from [4] and [2] for normal and 
oblique incidence. The plate strip is made of 6 mm 
aluminium with a loss factor of 0.1 assumed. The 
wavenumbers of free waves are shown inFigure 3.1. From 
this it can be seen that the first waves (with half a 
wavelength across the width) cut on at 14.8 Hz. Subsequent 
wave modes, with m  half wavelengths across the width, cut 
on at m2 times this first cut-on frequency. 

 
Figure 3.1 The dispersion curves of a simply-supported 
plate strip 

3.1 Normal incidence 
Figure 3.2 presents a comparison of the predicted STL 

between the plate strip and infinite plate. In general, at 
frequencies above 100 Hz, the STL of the plate strip tends 
to the infinite plate result which typically follows the mass-
law behaviour. Hence, for this region the STL of the plate 
strip is mass-controlled. Some dips or ripples are found in 
the curves that are related to cut-on frequencies of different 
waves in the plate while such features are not present in the 
infinite plate model. At low frequency, or ω << 1ω , a 
stiffness-controlled behaviour appears where a slope of -30 
dB/decade occurs rather than -20 dB/decade found for the 
infinite plate model. At the first cut-on frequency 1ω , the 
transmission loss has a negative value rather than zero as 
the lowest value which appears in the infinite plate model. 
This happens as the incident sound is normalized to the area 
of the plate whereas power can also be transmitted from a 
wider area by diffraction. Hence the ratio of radiated sound 
power and incident power can be greater than unity for the 
case of the plate strip which has a finite dimension in one 
direction. A more detailed discussion on this issue is given 
in [5]. 
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Figure 3.2. STL comparison of the plate strip and the 
infinite plate for normal incident case (━ plate strip; ┅ 

STL slope  of plate strip; –• – infinite plate). 
 
The slope of the STL curve in Figure 3.2 changes from 

10 dB/decade to 20 dB/decade at about 200 Hz. This 
frequency corresponds to 2 ylλ ≈ . Thus, below this 

1m = 2m = 3m = 4m =  5m =  6m =

-30 dB/decade 

10 dB/decade 

20 dB/decade 

transition  

 
2 ylλ ≈  
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frequency the plate strip is narrow compared with the 
wavelength and it radiates as a line source whereas above 
this frequency it radiates as an area. This also affects the 
slope at low frequency as noted above. 

3.2 Oblique incidence 
Figure 3.3 shows results for different angles of 

incidence about the x axis with 90ϕ = o . The coincidence 
frequency depends on the incident angle, with a higher 
angle corresponding to a lower coincidence frequency. 
These results have a similar tendency to those obtained by 
the infinite plate model which is calculated following [2]. 
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Figure 3.3. STL of the plate strip and the infinite plate for 
oblique incidence (━ plate strip; ┅ infinite plate). 

 
However, in the area close to the coincidence frequency 

the STL of the infinite plate tends to be higher than that of 
the plate strip. This difference is affected by the presence of 
edge mode radiation and cut-on frequencies in the plate 
strip response. Conversely, when the incident angle is 
getting larger, it can be seen that the STL of the infinite 
plate is lower than that obtained by the plate strip model for 
frequencies below the coincidence frequency. This is 
caused by the influence of the radiation ratio of the infinite 
plate which increases as the incident angle increases and 
becomes infinite when 90θ = o  while that of a finite 
structure remains finite [6].  

3.3 Diffuse sound field 
The diffuse sound field excitation is formulated as the 

superposition of uncorrelated plane waves with equal 
amplitude in all direction. The sound transmission is then 
obtained by integrating the response of all incident plane 
waves over the incident angle and weighting them with the 
solid angle to account for the directional distribution. The 
diffuse sound transmission loss is calculated using 9 
incident angles about the x  axis and 18 incidence angles 
about the y  axis. An upper elevation angle limθ = 90º  
corresponds to the full random incidence case [7]. 

Figure 3.4 presents a comparison of the sound 
transmission loss between the plate strip and the infinite 
plate for the diffuse field case. It is clear that the dip at 
around 2 kHz is associated with the critical frequency. 
Above this frequency, the plate strip and the infinite plate 
produce a similar curve. However, below this frequency the 
STL of the plate strip is higher by 6.5 dB at low frequency 

than that of the infinite plate. This difference reduces with 
increasing frequency. It comes about because a finite extent 
in one dimension of the plate strip introduces a spatial 
windowing effect on the infinite baffle [6]. Accordingly, 
the radiation ratio of the infinite plate is modified to remain 
finite for increasing incident angle rather than becoming 
infinite. This leads to a higher STL for the plate strip. This 
situation is also illustrated in Figure 3.3 for oblique 
incidence.  
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Figure 3.4. STL of plate strip under a diffuse sound field 
excitation (━ Plate strip; ┅ infinite plate). 

4 Comparison of analytical and 
numerical model results 

To demonstrate the capability of the analytical model to 
be used as a benchmark solution, the analytical model 
results are compared with those obtained by a numerical 
model. The numerical model is developed based on the 
coupled Waveguide Finite Element-Wavedomain Boundary 
Element (WFBE) method [8] and is realized using eight-
noded quadrilateral solid elements with quadratic 
polynomial shape functions. Meanwhile, a three-noded 
quadrilateral element is used for the WBE fluid. The BE 
mesh is extended by 1 m on both sides beyond the width of 
the plate strip to represent the rigid baffle.  

4.1 Normal and oblique incidence 
Figure 4.1(a) presents a comparison of the STL for the 

analytical model and the numerical one and for the normal 
incidence case. At frequencies above 50 Hz, the results of 
the analytical model agree well with those of the numerical 
one. Below this frequency, the discrepancy is due to the 
finite baffle width; hence it will always appear depending 
on the assumed baffle length considered in the numerical 
model.  

For the case of oblique incidence about the x  axis, the 
results are shown in Figure 4.1(b). The analytical model 
generally produces similar results to the numerical ones 
below the coincidence frequency. A similar situation is also 
evident for the case of oblique incidence about the y  axis 
as shown in Figure 4.1(c). This is indicated by the overall 
STL behaviour below and at the coincidence frequency. 
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(c) 

Figure 4.1. STL for normal and oblique incidence: (a) 
normal incidence; (b) at 45º about  x  axis; (c) at 45º about 
y  axis (━ numerical model ┅ analytical model). 

4.2 Diffuse sound field excitation 
The diffuse sound field is represented by the full 

random incidence (or 
lim

90θ = o ). These results are shown in 
Figure 4.2. From this, the analytical model produces a good 
result compared with that of the numerical model. 
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Figure 4.2. STL of the numerical model and the analytical 
model under a diffuse sound field excitation (━ numerical 
model; ┅ analytical model) 

5 Conclusion 
The sound transmission loss of the plate strip for normal 

incidence converges to the mass-law result at high 
frequencies. At low frequency, below the first cut-on 
frequency, a stiffness-controlled region appears, while the 
mass-controlled region exists above the first cut-on 
frequency. The slope at low frequencies is modified from 
the result for an infinite plate when the width is less than 
half the acoustic wavelength. Some dips or ripples in the 
curve are related to edge mode radiation and various cut-on 
frequencies. Such features are introduced by finite extent 
that are not present in an infinite model. 
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