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A time-domain plane wave superposition method (TD-PWSM) is proposed to reconstruct nonstationary sound 
fields. At each time step of this method, the time-wavenumber spectrum of the sound pressure on the virtual 
source plane is firstly estimated by using the measured sound pressure and the right pseudo-inverse of the time-
domain propagation kernel matrix, and then the reconstruction is performed through a superposition of all the 
time convolutions between the estimated time-wavenumber spectrum of the sound pressure on the virtual source 
plane and the time-domain propagation kernel at each wavenumber. Since the inverse process at each time step 
is ill-conditioned, the Tikhonov regularization is introduced to obtain an appropriate solution. The method 
proposed provides the ability of continuously reconstructing time-dependent pressure signals and overcomes 
some errors due to the use of the two-dimensional spatial Fourier transforms, which is avoided. Numerical 
simulations demonstrate that it is feasible to reconstruct the nonstationary sound fields via TD-PWSM.

1 Introduction 
Nearfield acoustic holography (NAH) [1,2] is a well-

known technique for reconstructing three-dimensional 
sound fields based on discrete spatial Fourier transforms of 
sound pressure data measured over a finite area. However, 
it is usually applied to stationary sound fields. When the 
signals emitted by sources are nonstationary, NAH is 
unsuitable because the spatial sound fields have statistical 
properties which fluctuate with time. In order to reconstruct 
nonstationary sound fields, Time Domain Holography 
(TDH) [3] and Real-time Nearfield Acoustic Holography 
(RT-NAH) [4,5] are proposed. Nevertheless, either in TDH 
or in RT-NAH, the two-dimensional spatial Fourier 
transforms of the measured sound pressure are employed. 
In this paper a time domain plane wave superposition 
method (TD-PWSM) is proposed, which performs the 
reconstruction directly through a superposition of all the 
time convolutions between the estimated time-wavenumber 
spectrum of the sound pressure on the virtual source plane 
and the time-domain propagation kernel at each 
wavenumber, and needs no spatial Fourier transforms of the 
measured sound pressure, thus naturally avoids the errors 
and limitations (the window effects, etc.) associated with 
the spatial Fourier transforms. Similarly to RT-NAH, TD-
PWSM performs the reconstruction directly in the time 
domain, which also provides the advantage of continuously 
reconstructing time-dependent pressure signals. To examine 
the feasibility of reconstructing nonstationary sound fields 
by using TD-PWSM, a simulation is also presented in this 
paper. 

2 Theory of TD-PWSM 

2.1 The formulas of TD-PWSM 
Assume that all sources are behind the calculation plane 

czz = . There exist a virtual source plane vzz =  in the half 
space czz ≤  and a measurement plane mzz =  with N  
measurement points in the half space czz > , as shown in 
Fig. 1.  

According to the forward propagation formulation of 
the sound pressure in the time-wavenumber domain as 
shown in Ref. 6, the time-wavenumber spectrum of the 
pressure on the measurement plane can be expressed as the 
convolution of that on the virtual source plane and the 
impulse response function, that is 

),,,(),,,(),,,( tzkkhtzkkPtzkkP mvyxvyxmyx Δ∗= ,       (1) 

 

Figure 1: Geometry of the virtual source plane, the 
calculation plane and the measurement plane. 

where the propagation distance vmmv zzz −=Δ , h  is the 
impulse response function and given by 
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In Eq. (2), the transition pulsation 22
yxr kkc +=Ω , the 

propagation delay czmv /Δ=τ , c  denotes the sound 
velocity, )(tδ  denotes the Dirac delta function, 1J  denotes 
the Bessel function of the first kind and order 1, and )(tH  
denotes the Heaviside function. 

Through setting ),( yx=r  which represents a 
coordinate vector of any point in the space, ),( yx kk=K  
which represents a wavenumber vector, and applying the 
inverse two-dimensional spatial Fourier transforms with 
respect to x  and y  to Eq. (1), it yields 
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In Eq. (3), the double integral is discretized in the 
wavenumber domain, then ),,( tzp mr  is approximately 
given by  
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Here, { }Lll K,1, =K  is the set of the sampling points in 
the wavenumber domain. xkΔ  and ykΔ  are the sampling 
spacing respectively for xk  and yk  wavenumbers. When 

0→Δ xk , 0→Δ yk , and ∞→L , the accurate value of 
),,( tzp mr  can be obtained from Eq. (4). However, due to 

discrete computing, these conditions are never fulfilled. 
Meanwhile, since the evanescent waves corresponding to 
the larger wavenumbers rapidly decay with an increasing 
distance and the larger the wavenumber, the faster the 
decay, the tiny contributions associated with the larger 
wavenumbers on the sound pressure ),,( tzp mr  can be 
neglected. Thus the almost accurate value of ),,( tzp mr  can 
be obtained by giving L , a limited number of 
wavenumbers sampled once one ensures the wavenumber 
domain sampling area to cover all propagating waves and 
those evanescent waves which have significant amplitude in 
the measurement region.[7]  

Defining the time-domain propagation kernel between 
the sound pressure on the measurement plane ),,( tzp mr  
and the time-wavenumber spectrum of the sound pressure 
on the virtual source plane ),,( tzP vlK  as 
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Eq. (4) can be rewritten as 
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Similarly the time-dependent spatial sound field on the 
calculation plane czz =  is 
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where vccv zzz −=Δ .  
Eqs. (6) and (7) constitute the basic formulas of the TD-

PWSM, which describe that the time-dependent sound 
pressure radiated by the actual sources as a superposition of 
all the time convolutions between the time-wavenumber 
spectrum of the sound pressure on the virtual source plane 
and the time-domain propagation kernel at each 
wavenumber. If the time-wavenumber spectrum 

),,( tzP vlK  in Eq. (6) can be estimated properly by fitting 
the measured sound pressure ),,( tzp mr , and then is 
substituted to Eq. (7), the time-dependent spatial sound 
field on the calculation plane ),,( tzp cr  would be directly 
obtained. Compared with those in TDH and RT-NAH, this 
reconstruction process does not use the two-dimensional 
spatial Fourier transforms of the measured sound pressure.  

2.2 The reconstruction process 
In order to implement Eqs. (6) and (7), the discrete time 

variable it  such as 

titi Δ−= )1( ,  Ii L,2,1= ,                     (8) 

is used where tΔ  is the sampling period. According to Eqs. 
(2) and (5), the time-domain propagation kernel 

),,,( tzmvl ΔrKψ  is equal to zero for τ<t  caused by the 
fact that the impulse response function h  equals to zero for 

τ<t . Consider that kt  is the nearest time step more than or 
equal to τ . According to the discrete convolution formula, 
at time step kt  the spatial sound pressure on the 
measurement plane mzz =  is 
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Here for the sake of simplicity, tΔ  is omitted in the 
following formulas. The matrix formulation  
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has the advantage to describe Eq. (9) for N  measurement 
points of coordinate ir  ),1( Ll K= . Note that k

mΨ  is a 
LN ×  matrix. In practice, the number of measurement 

points N  is often smaller than the number of discrete 
wavenumbers L . The smallest 2-norm solution of  Eq. (10) 
can be obtained using the right pseudo-inverse of matrix 

k
mΨ , which is expressed as 

k
m

Rk
m pΨP += ][~1 ,                           (11) 

where Rk
m

+][Ψ  represents the right pseudo-inverse of matrix 
k
mΨ  and is given by 
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Once the smallest 2-norm solution 1~P  is solved, the 
pressure at any point r′  on the calculation surface at the 
first time step 1t  can be deduced as 

11
1
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where 
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And so forth, the solution at the ith time step it  
( 1,3,2 +−= kIi L ) is given by 
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Thus the pressure is obtained at any point r′  on the 
calculation surface at the ith time step it  
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In Eqs. (11) and (15), the direct use of the right pseudo-
inverse of matrix k

mΨ  leads to an inappropriate solution 
because the inversion is often ill-conditioned. In order to 
obtain an appropriate solution, the Tikhonov regularization 
[8] is implemented. Then the smallest 2-norm solution at 
the ith time step it  ( 1,2,1 +−= kIi L ) becomes  
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where i
λP~  denotes the regularized solution, and  
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The regularization parameter λ  is estimated by the 
Generalized Crossed Validation (GCV).[9] 

3 Numerical simulations 
The setup of the numerical simulations is shown in Fig. 

2. The sources are composed of two monopoles, locating at  
)m0,m18.0,m18.0(1M  and )m0,m36.0,m36.0(2M . 

1M  generates a nonstationary signal with a linear 
frequency modulation in the [200, 1800] Hz band and a 
Gaussian amplitude modulation. 2M  radiates another 
nonstationary signal – Morlet wavelet defined by  

2/
0

2

)2cos()( tetfts −= π ,                       (20) 

with Hz8000 =f . The measurement plane located at 
m13.0=mz  provides 77 ×  measurement points, and the 

spacing of measurement points in both x  and y  directions 
is set to m09.0=a . The calculation plane is located at 

m09.0=cz , and the virtual source plane is located at 
m06.0=vz . The emitted signals are sampled at a 

frequency Hz34400=ef  providing 256 samples. 
According to the Nyquist theorem, the wavenumber domain 
sampling area is given as ]/,/[ aa ππ− . Basing on the 
comprehensive consideration of the calculation precision 
and the computational efficiency, the wavenumber domain 
sampling spacing is given as )18/( aπ . A Gaussian white 
noise with a signal-to-noise ratio (SNR) of 20 dB is also 
added to the simulated signals. 
 

 

Figure 2: Geometric description of the virtual source plane, 
the calculation plane and the measurement plane. Points 1R  

and 2R  marked with +, stand for the points facing the 
source 1M  and the source 2M  respectively. Points 3R  and 

4R  marked with , stand for the points not facing sources. 

For the sake of assessing the relevance of the proposed 
method in the time domain, four space points on the 
calculation plane are chosen, and their positions are 

)m09.0,m18.0,m18.0(1R , )m09.0,m36.0,m36.0(2R ,
)m09.0,m18.0,m36.0(3R , )m09.0,m45.0,m45.0(4R . 

As shown in Fig. 2, 1R  and 2R  are facing the source 1M  
and the source 2M  respectively, while 3R  and 4R  are 
selected not facing the sources. Fig. 3 shows the 
comparisons between the calculated pressure and the 
theoretical pressure at these points in the time domain. It is 
demonstrated that the calculated results provide accurate 
phases and good magnitudes at all four points. 
 

 

Figure 3: Comparison between the time-dependent pressure 
signals on the calculation plane in points 1R  (a), 2R  (b), 

3R  (c), and 4R  (d): the theoretical pressure (red line), and 
the calculated pressure (blue line). 
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In order to comment more objectively the results 
calculated in the time domain, two time indicators 1T  and 

2T  are computed for a point ),( ji yx  on the calculation 
plane. They are defined by 
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t>< denotes the time averaged value. ),,,( tzyxp cjit  is the 
theoretical time-dependent pressure and ),,,( tzyxp cjic  is 
the calculated time-dependent pressure. 1T  and 2T  are 
sensitive to the phase differences and the magnitude 
differences between ),,,( tzyxp cjit  and ),,,( tzyxp cjic , 
respectively. Phase accuracy gives 1T  in the neighbourhood 
of 1, and magnitude accuracy gives 2T  near 0. The values 
of both indicators 1T  and 2T  are computed for each point on 
the calculation plane. The map of indicator 1T  with the 0.98 
contour line is shown in Fig. 4(a) and the map of indicator 

2T  with the 0.1 contour line is shown in Fig. 4(b). In Fig. 
4(a), the values of indicator 1T  at most points are greater 
than 0.98, which indicates that the phase of the calculated 
pressure matches well with that of the theoretical pressure. 
Fig. 4(b) shows that the values of indicator 2T  below 0.1 
mainly appear the area far away from 1R  and 2R , where 
provides the better magnitude accuracy. The values of 
indicator 1T  at marked points 1R (+), 2R (+), 3R ( ), and 

4R ( ) are 0.992, 0.982, 0.993, and 0.974, respectively. The 
values of indicator 2T  at marked points 1R (+), 2R (+),

3R ( ), and 4R ( ) are 0.081, 0.105, 0.057, and 0.046, 
respectively. 
 

 

Figure 4: Spatial maps for indicator 1T  (a) with a contour 
line at the value 0.98 and for indicator 2T  (b) with a contour 
line at the value 0.1. The points 1R (+), 2R (+), 3R ( ), and 

4R ( ) are marked. 

Similarly, to highlight the relevance of the proposed 
method in the space domain, two time instants ( 1t =3.9 ms 
and 2t =5.6 ms) are selected. Figures 5(a) and 5(c) show the 
theoretical spatial pressure field and the calculated spatial 
pressure field at 1t =3.9 ms, respectively, where the acoustic 
field is dominated by the acoustic signals radiated by 
sources 1M  and 2M . Figures 5(b) and 5(d) show the same 
spatial pressure fields but at 2t =5.6 ms, where the source 

1M  radiates with a high level and 2M  with a low level. 
From the comparison of the theoretical spatial pressure 
field and the calculated spatial pressure field, it is 
demonstrated that the proposed method provides a means of 
visualizing the spatial pressure field when the sound field 
fluctuates with time.  
 

 

Figure 5: Theoretical spatial pressure field at 1t =3.9 ms (a) 
and at 2t =5.6 ms (b), versus, calculated spatial pressure 

field at 1t =3.9 ms (c) and at 2t =5.6 ms (d). The lower left 
marked location is facing the source 1M  and the upper 

right marked location is facing the source 2M . 

In order to evaluate the quality of the results calculated 
in the space domain, a relative spatial error criterion is 
introduced, defined by 

sit
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which corresponds to the root mean square error between 
the calculated pressure ),,( ic tyxp  and the theoretical 
pressure ),,( it tyxp  at a given time it , and s><  denotes 
the spatial averaged value. The time evolution of the root 
mean square error is shown in Fig. 6, from which it can be 
seen that at most time instants the values of the root mean 
square error are smaller than 0.5. High values of the error 
are obtained at the edges of the signal due to the fact that 
the theoretical pressure field supplies the denominator of 
Eq. (23) with very low values at these time instants. The 
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values of the spatial error calculated at 1t =3.9 ms and at 

2t =5.6 ms are 0.194, 0.201, respectively. 
 

 

Figure 6: Time evolution of the spatial error criterion. The 
vertical lines indicate the time instants chosen at 1t =3.9 ms 

and at 2t =5.6 ms. 

4 Conclusion 
To reconstruct the nonstationary sound fields fluctuating 

with time, a time domain plane wave superposition method 
was proposed, which realizes the reconstruction through a 
superposition of all the time convolutions between the 
estimated time-wavenumber spectrum of the sound pressure 
on the virtual source plane and the time-domain 
propagation kernel at each wavenumber. Numerical 
simulations have demonstrated the ability of the method to 
calculate the time-independent pressure at each space point 
and visualize the spatial pressure field at each time instant. 
In theory, compared with TDH and RT-NAH, the method 
proposed has two advantages due to the fact it does not 
require to perform the two-dimensional spatial Fourier 
transforms of the measured sound pressure. One is to avoid 
the errors associated with the spatial Fourier transforms. 
The other is to remove the limit of regular microphone 
array, that is to say the microphone array employed by TD-
PWSM could be irregular, such as cross array, circular 
array, random array, etc. These two advantages will be 
discussed using examples in the future. 
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