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The “Institut national de recherche et de sécurité” (INRS) is interested in reducing hearing risks in industrial work-

places by improving in situ noise conditions. INRS proposes appropriate solutions for improving the acoustic

treatment of facings for workplace noise control. This requires development of theoretical and experimental meth-

ods of acoustically characterizing wall facings present in industrial rooms. Such walls, which possess periodic or

aperiodic relief, scatter sound waves. This work consists in developing a theoretical model to predict the acoustic

pressure field reflected and scattered over a periodic facing containing parallel rectangular cavities. Originally, the

model was based on a study of thick slits in electromagnetism. It was adapted to study the acoustic behavior of a

rectangular cavity by blocking off the bottom of the slit. Then, the model was generalized for several joint cavities

by taking into account effects of coupling. It was compared with experimental results obtained in a semi-anechoic

room for a periodic facing containing three parallel rectangular cavities insonified by an incident spherical acous-

tic field. The observed concordance between the numerical and experimental results supports the validity of our

model over a wide spectral range.

1 Introduction
Acoustic characterization of surfaces in industrial work-

places is necessary for predicting the sound pressure level

at specific locations, for improving acoustic treatment and

providing suitable noise control solutions. Workshop wall

facings mostly feature geometric and/or acoustic irregulari-

ties, usually comprising rectangular cavities created by win-

dows, doors and congesting furniture, which induce a scat-

tered acoustic field.

The purpose of this work is to predict this scattered field

over a wide frequency range, for a rectangular cavity. K.

Hongo et al [1] and H. Serizawa et al [2] use the Kobayashi

Potential (KP) method for determining the acoustic field dif-

fracted by a rectangular aperture in an infinitely large screen.

K. Hongo et al. [5, 6] used the KP method to investigate

the electromagnetic field diffracted by an array of N slits and

by N parallel plate wave-guides respectively. In this study,

the KP method was adapted to predict the scattered acoustic

field generated by several parallel rectangular cavities in an

infinitely large rigid screen.

2 Statement of the problem

2.1 Study of a single cavity
Consider a rectangular cavity in an infinitely large, rigid,

thick screen. The cavity size is 2a × 2b × d. Let ηad be the

characteristic admittance of the bottom of the cavity, Φ
pl
inc be

the incident acoustic field and Φr be the specular reflected

wave generated by the flange given by Dc = {(x, y)/|x| >
a, |y| > b} ⊂ R2 and z = 0. D is the complement of the section

of space Dc. Φd is the diffracted acoustic wave generated by

the cavity. Φw is the acoustic modal field propagating in the

cavity. These features are shown in figure 1.
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Figure 1: Geometry of the studied cavity and different

acoustic fields

The expressions of the incident, the specular reflected

plane waves, and the modal field, are known to be (1)-(3)

respectively in the frame of reference (O, x, y, z). According

to the KP method the diffracted acoustic field is given by the

equation (4) [1, 2].

Φ
pl
inc = Aejkx xe jkyye jkzz (1)

Φr = Aejkx xe jkyye− jkzz (2)

Φw =
∑
p≥0

∑
q≥0

cos
( pπ

2
(ξ + 1)

)
cos

(qπ
2

(η + 1)
)

×
(
Epqe−γpqz + Fpqeγpqz

)
(3)

Φd =
∑

m,n≥0

�
R

2
+

(
AmnΦ

(m,n)
cc + BmnΦ

(m,n)
cs +CmnΦ

(m,n)
sc

+ DmnΦ
(m,n)
ss

)
e−

√
α2

a2 +
β2

b2 −k2z dα dβ (4)

where �k = kx �ux + ky �uy + kz �uz is the reflected wave vector,

ξ = x
a , η = y

b and γp,q =

√
(

pπ
2a )2 + (

qπ
2b )2 − k2. Amn, Bmn, Cmn,

Dmn, Epq and Fpq are unknown modal amplitudes. With:

Φ(m,n)
cc =

J2m(α)J2n(β)cos(αξ)cos(βη)√
α2

a2 +
β2

b2 − k2

(5)

Φ(m,n)
cs =

J2m(α)J2n+1(β)cos(αξ)sin(βη)√
α2

a2 +
β2

b2 − k2

(6)

Φ(m,n)
sc =

J2m+1(α)J2n(β)sin(αξ)cos(βη)√
α2

a2 +
β2

b2 − k2

(7)

Φ(m,n)
ss =

J2m+1(α)J2n+1(β)sin(αξ)sin(βη)√
α2

a2 +
β2

b2 − k2

(8)

The various unknown amplitudes are determined by en-

forcing the boundary conditions (9)-(11).

∂

∂z

(
Φ

pl
inc + Φr + Φd

)
=
∂

∂z
Φw, (x, y) ∈ D, z = 0 (9)

Φ
pl
inc + Φr + Φd = Φw, (x, y) ∈ D, z = 0 (10)

∂Φw

∂z
− jkηadΦw = 0, (x, y) ∈ D, z = −d (11)

We expand the trigonometric functions in the equation

(9) in terms of Jacobi’s polynomials, G(2, 3
2

)(x) for the sine

function and G(2, 1
2

)(x) for the cosine function, to project the

resulting equations into the functional space defined by the

same polynomials. The equation (10) is projected into the

functional space defined by trigonometrical functions. The
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equation (11) allows us to eliminate one of the unknown am-

plitudes: Fpq or Epq. The resulting equations build up a sys-

tem of linear equations enabling us to determine the unknown

amplitudes: Amn, Bmn, Cmn, and Dmn. This system is given by

equations (12)-(15).

[Amn][G(2m, 2n, 2s + 1, 2t + 1)]

= [Λ(2s + 1, 2t + 1)] (12)

[Bmn][G(2m, 2n + 1, 2s + 1, 2t + 2)]

= [Λ(2s + 1, 2t + 2)] (13)

[Cmn][G(2m + 1, 2n, 2s + 2, 2t + 1)]

= [Λ(2s + 2, 2t + 1)] (14)

[Dmn][G(2m + 1, 2n + 1, 2s + 2, 2t + 2)]

= [Λ(2s + 2, 2t + 2)] (15)

s, t = 0, 1, 2, · · ·
Where:

G(2m + μ, 2n + ν, 2s + 1 + μ, 2t + 1 + ν)

=

�
R

2
+

J2m+μ(α)J2s+1+μ(α)J2n+ν(β)J2t+1+ν(β)

αβ

√
α2

a2 +
β2

b2 − k2

dα dβ

−
∑
p,q≥0

(
1

ε2p+με2q+νγ2p+μ,2q+ν

Γ+2p+μ,2q+ν

Γ−
2p+μ,2q+ν

× J2m(
2p+μ

2
π)J2s+1+μ(

2p+μ
2
π)

2p+μ
2

× J2n(
2q+ν

2
π)J2t+1+ν(

2q+ν
2
π)

2q+ν
2

)
(16)

Λ(2s + 1 + μ, 2t + 1 + ν)

= −2 jμ+νA
J2s+1+μ(kxa)

kxa
J2t+1+ν(kyb)

kyb
(17)

With:

Γ±p,q = 1 ± γpq + jkηad

γpq − jkηad
e2γpqd (18)

εp =

{
2 if p = 0

1 else
(19)

The double integrals in equation (4) are transformed into

polar coordinates and then divided into two regions: real and

imaginary parts. The integral in each region is evaluated us-

ing the Cubature method [3].

2.2 Study of several cavities
Consider now that we have a array of N rectangular cav-

ities. We then have N diffracted fields, generated by respec-

tive ones of the cavities, and N modal acoustic fields propa-

gating inside the N cavities. Thus, we have 6N unkown am-

plitudes. In order to determine them, we apply the following

boundary conditions for the ith cavity:

∂

∂z

⎛⎜⎜⎜⎜⎜⎜⎝Φpl
inc + Φr + Φ

i
d +

∑
j�i

Φ
j
d

⎞⎟⎟⎟⎟⎟⎟⎠ = ∂∂zΦi
w, (xi, yi) ∈ D, z = 0(20)

Φ
pl
inc + Φr + Φ

i
d +

∑
j�i

Φ
j
d = Φ

i
w, (xi, yi) ∈ D, z = 0 (21)

∂Φi
w

∂z
− jkηi

adΦ
i
w = 0, (xi, yi) ∈ D, z = −di (22)

Where D = {(x, y) / |xi| < ai, |yi| < bi} ⊂ R2 represent the

domain of the cavities. Dc is the complement of D.

The total field above the ith cavity contains the incident

field Φ
pl
inc, the specular reflected field Φr, the diffracted field

Φi
d generated by ith element itself and the other diffracted

fields
∑

j�iΦ
j
d generated by its neighboring cavities: all the

jth cavities excluding the ith one. This term illustrates the

contribution from other cavities in the generation of the field

diffracted by the ith cavity. It corresponds to the coupling

between the different cavities contained in the wall facing.

To apply the conditions (20)-(21) we use the relationships

(23) and (26) between the various local coordinates.

x = xi + δxi (23)

y = yi + δyi (24)

x j = xi + δxi j (25)

y j = yi + δyi j (26)

Where (δxi , δyi ) are the coordinates of the ith local frame

(Oi, xi, yi, z) centre in the reference frame (O, x, y). δxi j (re-

spectively δyi j ) represents the distance between the centres of

the ith and the jth local frames along the x axis (respectively

y axis), given by:

δxi j = δxi − δx j (27)

δyi j = δyi − δy j (28)

We apply the same procedure as a simple cavity and we

obtain the system of matrix equations to calculate the ampli-

tudes Ai
mn, Bi

mn, Ci
mn and Di

mn of the ith cavity:

[Ai
mn][G0i,0i ] +

∑
j�i

(
[Aj

mn][G0i,0i
0 j,0 j

] + [Bj
mn][G0i,0i

0 j,1 j
]

+[C j
mn][G0i,0i

1 j,0 j
] + [Dj

mn][G0i,0i
1 j,1 j

]

)
= [Λ0i,0i ] (29)

[Bi
mn][G0i,1i ] +

∑
j�i

(
[Aj

mn][G0i,1i
0 j,0 j

] + [Bj
mn][G0i,1i

0 j,1 j
]

+[C j
mn][G0i,1i

1 j,0 j
] + [Dj

mn][G0i,1i
1 j,1 j

]

)
= [Λ0i,1i ] (30)

[Ci
mn][G1i,0i ] +

∑
j�i

(
[Aj

mn][G1i,0i
0 j,0 j

] + [Bj
mn][G1i,0i

0 j,1 j
]

+[C j
mn][G1i,0i

1 j,0 j
] + [Dj

mn][G1i,0i
1 j,1 j

]

)
= [Λ1i,0i ] (31)

[Di
mn][G1i,1i ] +

∑
j�i

(
[Aj

mn][G1i,1i
0 j,0 j

] + [Bj
mn][G1i,1i

0 j,1 j
]

+[C j
mn][G1i,1i

1 j,0 j
] + [Dj

mn][G1i,1i
1 j,1 j

]

)
= [Λ1i,1i ] (32)

Where:

Gμi,νi =

�
R

2
+

J2m+μi (α)J2s+1+μi (α)J2n+νi (β)J2t+1+νi (β)

αβ
√
α2 + ( ai

bi
β)2 − (kai)2

dα dβ

−
∑
p,q≥0

(
π2

ε2p+μiε2q+νiγ2p+μi,2q+νi

Γ+i
2p+μi,2q+νi

Γ−i
2p+μi,2q+νi

× J2m(
2p+μi

2
π)J2s+1+μi (

2p+μi
2
π)

2p+μi
2
π
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× J2n(
2q+νi

2
π)J2t+1+νi (

2q+νi
2
π)

2q+νi
2
π

)
(33)

s, t = 0, 1, 2, · · ·
Gμi,νi
μ j,ν j = (−1)μ j+ν j

×
�
R

2
+

J2m+μ j (α)J2s+1+μi (
ai
a j
α)J2n+ν j (β)J2t+1+νi (

bi
b j
β)

ai
a j
α bi

b j
β
√
α2 + (

a j

b j
β)2 − (ka j)2

× cos

(
δxi j

a j
α + (μi + μ j)

π

2

)
cos

(
δyi j

b j
β + (νi + ν j)

π

2

)
dαdβ (34)

Λμi,νi = −2 jμi+νi A
J2s+1+μi (kxai)

kxai

J2t+1+νi (kybi)

kybi
(35)

With:

Γ±i
pq = 1 ± γ

i
pq + jkaiη

i
ad

γi
pq − jkaiη

i
ad

e2γi
pqdi (36)

γi
pq =

√
(

pπ
2

)2 + (
ai

bi

qπ
2

)2 − (kai)2 (37)

3 Results and discussion
To validate the model, sound pressure profiles above two

wall facings were measured.

• The first was formed by a (46.0×48.2×21.1) cm3 rigid

cavity.

• The second was a periodic array of (50.3 × 48.4 ×
21.1) cm3 rigid cavities. The periodicity was 34.4 cm
along the x axis. The reference frame is centered on

the central cavity.

3.1 Experimental procedure
Measurements were taken under free-field conditions in

the INRS semi-anechoic chamber. The cavities’ bottoms were

considered infinitely rigid (steel or tiles). Profiles were formed

by tiled polystyrene blocks to ensure a high acoustic reflec-

tion coefficient.

The sound source used for the test was a horn with a

15 mm outlet diameter. A 10 cm diameter Pioneer TS E1077

loudspeaker was fixed between the horn and the cylindrical

body. The source emitted spherical waves [4].

The acoustic source was connected to a B&K 1405 noise

generator through a Power APK 2000 amplifier and a Yamaha

GQ 1031 Graphic Equalizer to generate white noise. B&K

4935 1/4” microphones were used for acquisition, connected

to a B&K 2694 Deltatron conditioner. The acquisition sys-

tem was a NetdB of the 01dB-Metravib company (Figure 2).

Signal acquisition was performed at a 25, 600 Hz sampling

frequency for 30 s.

The sound pressure profile was measured by 45 sensors

along the x axis. Measurement was performed in three stages,

for three juxtaposed positions of an antenna fitted with 15

small 1/4” microphones. These were spaced apart at 5.5 cm
intervals and their positions were chosen such that the central

microphone of the 45-sensor virtual array was positioned di-

rectly below the loudspeaker at 0.2 m above the studied wall

facing (see figure 3).

For the experimental system, we opted for a spherical

acoustic incident wave, which was decomposed into a plane

wave spectrum. The total diffracted field was obtained by

Figure 2: Experimental device

0
.8
5
m

1.21m 1.21m

Loudspeaker

Position 1

Position 2

Position 3

34.2 cm 34.2 cm

x = 0

2a = 50.3 cm 2
b
=

4
8
.4
c
m

Horn

Figure 3: Experimental procedure for the array of three

cavities

summing all fields generated by the respective plane waves

(see section 3.2)

In simulation, the matrices [Gμi,νi ] and [Gμi,νi
μ j,ν j ] in equa-

tions (29)-(32) were truncated by S 2 × S 2. Where S is the

maximum value of m, n, s, and t. The decomposition into

plane wave spectrum were integrated into the systems of the

matrix equations (29)-(32) The sizes of the matrices [Amn],

[Bmn], [Cmn], [Dmn] and [Λμi,νi ] are nxny × S 2. nx and ny are

the numbers of FFT samples along the x and y axis respec-

tively (see section 3.2).

3.2 Principle of incident acoustic field decom-
position

This technique involves expanding a complex wave field

into the sum of an infinite number of plane waves. The plane

wave amplitudes Ã are given by the following decomposition

process at z = 0:

Ã(kx, ky, 0) =

�
R2

Φ
sph
inc (x, y, z = 0)e− j(kx x+kyy)dxdy (38)

Where Φ
sph
inc is the incident acoustic field to be decomposed.

The 2-dimensional Fourier transform was numerically de-

termined using a Fast Fourier Transform (FFT) algorithm.

Spatial sampling must satisfy Shannon’s theorem:

Δx <
c

2 f
, Δy <

c
2 f

(39)

The number of FFT samples nx and ny must be squares for the

FFT algorithm to give acceptable results. The dimensions Lx

and Ly of the sampling grid must be large enough to consider

the incident field negligible outside.

nx = 2Int+(log2( Lx
Δx )) (40)

ny = 2Int+(log2(
Ly
Δy )) (41)
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Where Int+(var) = Int(var) + 1, and Int(var) is the integer

part of the decimal number var.

3.3 Results
Figure 4 shows the various acoustic pressure moduli ob-

tained with the model and the experiment for frequencies of

500 Hz, 1100 Hz, 1600 Hz and 3100 Hz along the x axis for

the single cavity. Figure 5 shows the various acoustic pres-

sure moduli obtained with the model and the experiment for

frequencies of 230 Hz, 500 Hz 1100 Hz and 1500 Hz along

the x axis for the periodic array. All these acoustic pres-

sure profiles are normalized with respect to the central mi-

crophone measurement.

We observe that these acoustic pressure moduli are fairly

symmetrical with respect to the center of the loudspeaker.

The acoustic pressure moduli become more irregular as

the frequency increases. This phenomenon is justified by the

more directive scattering at these frequencies. Another rea-

son is that the size of the edges becomes large compared to

the wavelength, increasing the scattering.

We note in the case of the periodic array that coupling

is more important at the frequency 230 Hz. We suppose that

the interactions of acoustic coupling between the cavities are

larger in low frequencies because the acoustic radiation of

a cavity can easily disrupt the acoustic field insonifying the

neighboring cavities at these frequencies. At higher frequen-

cies, the coupled and uncoupled fields become very close.

This allows us to say that the coupling decreases at high fre-

quencies. We suppose that at such frequencies, the acoustic

radiation of a cavity becomes more directive. It has less abil-

ity to disrupt the acoustic field insonifying the neighboring

cavities. These hypotheses will soon be verified by an exper-

imental study.

Measurements at greater distances from the surface were

not taken because the model was designed for infinite sur-

faces. We placed the spherical source close to the studied

profile to prevent acoustic boundary phenomena associated

with the finite dimensions of the studied profiles. It would

have been difficult to position the microphone further from

the surface under these conditions. Up to 3100 Hz, the curves

show a good concordance between the numerical and exper-

imental results. Processing was limited to the three highest

frequencies because the computing load limit was reached

for this frequency (or just above).

A root mean square error (RMS E) can be calculated from:

RMS E =

√√∑M
i=1

(
xi

Theoretical − xi
Experimental

)2

M
(42)

where xi
Theoretical (respectively xi

Experimental) is the expected

theoretical (respectively experimental) value and M is the

number of experimental values. Tables 1 and 2 consolidates

the RMS E values for the selected frequencies in the case

of the single cavity and the periodic array respectively. The

RMS E values are less than 0.16 in both cases, thereby con-

firming close concordance between the analytical model and

the experiment.

4 Conclusion
An investigation of the acoustic wave scattering by an

aperiodic array formed by N parallel rectangular cavities with
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Figure 4: Normalized acoustic pressure at 0.2 m above the

studied single cavity for different frequencies
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Figure 5: Normalized acoustic pressure at 0.2 m above the

periodic array for different frequencies

Frequency 500 Hz 1100 Hz 1600 Hz 3100 Hz
RMS E 0.05 0.11 0.10 0.13

Table 1: Relative root mean square errors of the study model

for the single cavity.

Frequency 230 Hz 500 Hz 1100 Hz 1500 Hz
RMS E 0.11 0.06 0.10 0.16

Table 2: Relative root mean square errors of our model for

the periodic array.

different sizes and spacings was performed using KP method.

A conparaison between the analytical model and experiment

was performed for one cavity and for a periodic array of three

cavities. Good concordance was obtained for various fre-

quencies. The RMS E is still low at the highest frequency,

so we are hopeful that the model will remain valid above

1500 Hz, approaching the highest possible computing capac-

ity.

It was seen that the coupling between the cavities de-

crease with frequency. In our experiments, coupling terms

were highlighted at 230 Hz. From 500 Hz, and even for close

cavities as shown in our study, the coupling becomes rela-

tively negligible.

The study model separates the various existing fields above

an aperiodic array of rectangular cavities, namely the inci-

dent, the specular reflected and the diffracted fields. This

makes it possible to calculate the scattering coefficient of dif-

ferent arrays formed by parallel rectangular cavities. This

could lead to finding an optimal configuration giving a high

scattering coefficient.
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