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Under the assumptions of incompressible, viscid, steady and parallel flow, analytical solutions are presented for
fully developed pressure driven flow through uniform ducts with different cross section shapes. The considered
geometries cover a wide range of shapes, which are relevant to different portions of the upper airways (e.g. glottis
or/and oral tract) in normal or pathological conditions during breathing or speech production. In addition to the
duct cross section shape, the cross section area in the main flow direction is varied in order to mimic upper airway
portions in more detail. Besides the geometry, the Reynolds number is varied in a range relevant to the upper
airways and speech production (0 < Re < 104). The effect of viscosity for the different geometries under study is
discussed and comparision is based on either a fixed area or a fixed hydraulic diameter.

1 Introduction
Physical modelling of human speech production often re-

lies on severe simplifications of the used mechanical, flow
and acoustic models. The main reason for a simplified model
approach relies in the limited number of remaining param-
eters which enables 1) experimental validation of physical
models and 2) understanding of the influence of individual
parameters. In this framework, the cross-section shapes en-
countered in the human upper airways are represented as ei-
ther rectangular or circular whereas real life geometries vary
considerable and more precise approximations can be used,
such as an ellipse at the lips or as a triangle at the glottis dur-
ing breathing. Therefore, in the current paper it is assessed
to discuss the benefit of varying the cross section shape from
circular or rectangular while maintaining the model approach
commonly applied in physical modelling of human speech
production and in particular phonation . Common flow mod-
els are derived from Bernoulli’s one-dimensional flow equa-
tion corrected for viscous effects [1]. The current study will
focus on the influence of the cross section shape on the vis-
cous flow correction. Analytical solutions of viscous flow
are favoured 1) in order to be integrated in existing models
and 2) to be used as a validation for more complex flow mod-
els. Besides the velocity distribution important quantities for
biomechanics such as the wall shear stress and associated
friction factor can be derived. In the following sections, the
different cross section shapes and channel geometries are in-
troduced, the flow model is outlined and the model outcome
is presented. A comparison between different cross section
shapes is assessed by imposing either cross section area A or
hydraulic diameter D.

2 Channel geometry
The channel geometry is fully defined by its shape (sec-

tion 2.1) and the area along the main flow direction x (sec-
tion 2.2). Main geometrical parameters are given in Table 2.

2.1 Uniform channel: cross section shape
In order to allow the use of the cross section shapes in

quasi analytical models only cross sections shapes for which
the main geometrical parameters can be expressed analyti-
cally are assessed (Fig. 1): rectangle (re), circle (cl), ellipse
(el), eccentric annulus (ea), half moon (hm), circular section
(cs), equilateral triangle (tr) and limacon (lm). The cross sec-
tion is positioned in the (y, z) plane where y denotes the span-
wise and z the transverse direction. An analytical expression
of the shape can be obtained in terms of the parameters a and
b. A uniform channel is fully defined by its cross section
shape and its cross section area A. An important additional
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Figure 1: Different cross section shapes in the (y, z) plane.

parameter is the ratio of area to perimeter S or hydraulic di-
ameter D = 4A/S given in Table 1.

Table 1: Hydraulic diameter D for which the subscript
indicates the cross section shape. Geometrical parameters

are given between straight brackets.
Cross section shape Hydraulic diameter D

circle [a] Dcl = 2a

ellipse [a, b]
Del = 4ab

a+b

(
64−16c2

64−3c4

)
c = a−b

a+b

rectangle [a, b] Dre = 4ab
a+b

equilateral triangle [a] Dtr = a
√

3

circular1 segment [a, b] Dcs = 2ab
2+b

eccentric annulus [a, b] Dea = 2(a − b)

half moon [a, b]

Dhm =
4Ahm

(π−θ2)(2a+b)

Ahm = a2
(
π − θ2 + 1

2 sin(2θ2)
)

− b2

2 (π − θ2 − sin(θ2))

θ2 = 2 arcsin( b
2a )

limacon [a, b] Dlm = 2a(2 − 4/(b2 + 4))

(polar form r(θ)) b ≤ 1, a = r(θ = π/2)
1 b indicates an angle instead of a length (see Fig. 1).

2.2 Converging-diverging channel
A channel with varying cross section area in the longitu-

dinal x direction and fixed shape is of interest. It is sought
to vary the parameter f (x) describing the cross section, i.e.
concretely f (x) denotes either area A(x) or hydraulic diame-
ter D(x), in a prescribed manner. f (x) is obtained following
a combination of control parameters (Fig. 2(a)): maximum
value f0, minimum value fmin < f0, total channel length L,
constriction length Lc and a prescribed transition function de-
scribing the transition from f0 to fmin upstream and down-
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stream from the constriction. Besides a sine function (illus-
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Figure 2: a) varying f (x): sine transition function,
constriction length Lc, minimum fmin, maximum f0 and total

channel length L. b) transition functions for x1 ≤ x ≤ x2.

trated in Fig. 2(a)) several transition functions can be used to
prescribe the diverging or converging portion of the transi-
tion from f0 to fmin, i.e. upstream and/or downstream from
the constriction in the intervals I1 = [x1 x2] and I2 = [x3 x4],
respectively. Concretely, a sine, step or circulary rounded
transtion is used to describe the transition for x ∈ I1,2 as de-
picted in Fig. 2(b).

Table 2: Overview of main geometrical parameters.

Cross section
Channel geometry

Uniform Converging-

diverging

shape a, b
√ √

hydraulic1 diameter D
√ √

maximum f0
√ √

transition f (x1 ≤ x ≤ x2) -
√

transition f (x3 ≤ x ≤ x4) -
√

minimum fmin, Lc -
√

1 or area A = π
D2

cl
4 .

3 Viscous flow model
The flow model and its underlying assumptions are out-

lined for pressure driven viscous flow through a channel. Us-
ing the parameters summarised in Table 2 flow through a
uniform (section 3.1) as well as converging-diverging (sec-
tion 3.2) channel needs to be modelled.

3.1 Uniform channel
For a given fluid and under the assumptions of a laminar,

incompressible, parallel and steady viscous flow through a
uniform channel with arbitrary but constant shape, such as
the cross sections discussed in section 2.1, the streamwise
component of the momentum equation expressed in cartesian
coordinates (x, y, z) reduces to the following Poisson equa-
tion:

∂2u
∂y2 +

∂2u
∂z2 =

1
µ

dP
dx
, (1)

the spanwise and transverse components of the momentum
equation become:

∂P
∂y

= 0,
∂P
∂z

= 0 (2)

and the continuity equation yields:

∂u
∂x

= 0, (3)

describing fully developed flow in the streamwise x direc-
tion, driving pressure difference dP/dx, velocity u(x, y, z) and
fluid properties, i.e. dynamic viscosity µ, density ρ and their
ratio which yields kinematic viscosity ν = µ/ρ. A no slip
condition on the boundaries is imposed so that u = 0 on the
channel walls. The driving pressure difference is defined as

AssumptionsInput Output

laminar, viscid,
parallel, steady,

incompress-
ible, no slip

geometry
dP/dx

fluid (µ, ρ)

u(x, y, z)
P(x)
τ(x)
Q

Figure 3: Overview of pressure driven viscous flow model.

the difference between the upstream pressure Pup = P0 and
downstream pressure Pd = 0 so that dP/dx = P0 holds. For
air, the fluid properties yield µ = 1.8 × 10−5 Pa/s, ρ = 1.2
kg/m3 and ν = 1.5 × 10−5 m2/s. For uniform geometries and
applying the no slip boundary condition Eq. 1 can be rewrit-
ten as a classical Dirichlet problem which can be solved ana-
lytically for simple geometries using e.g. separation of vari-
ables since both sides of Eq. 1 are constant. Therefore exact
solutions can be obtained for: local velocity u(x, y, z), local
pressure P(x), wall shear stress τ(x) and derived quantities
such as volume flow rate Q. Underlying flow assumptions,
model input and model output quantities are summarised in
Fig. 3. As an example, analytical solutions for the cross sec-
tion shapes depicted in Fig. 1 are given in Table 3 for the
volume flow rate Q as function of the driving pressure dif-
ference dP/dx. Note that the parameters a and b vary with
the cross section shape as shown in Fig. 1. Once the vol-
ume flow rate Q is known the bulk Reynolds number Re is
estimated as Re =

QD
νA = ubD

ν
, where ub denotes the bulk

velocity ub = Q/A. Although the model is pressure driven
as depicted in Fig. 3, the model output Q (or Re or ub) can
be used to control the model instead of the driving pressure
dP/dx by using a relaxation method or by using an analytical
relationship between Q(dP/dx) as given in Table 3.

3.2 Converging-diverging channel
A non uniform channel with constant cross section shape

is obtained by introducing a streamwise converging-diverging
portion in an otherwise uniform channel by prescribing a ge-
ometrical parameter f (x), i.e. either area A or hydraulic di-
ameter D, as outlined in section 2.2. Application of the tran-
sition functions, to describe the transition from the uniform
channel portion characterised by f0 to the minimum value
fmin, results in a channel geometry which is characterised by

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2227



Table 3: Illustration of analytical solutions. Geometrical
parameters a and b are as depicted in Fig. 1.

Cross section Volume flow rate Q
(

dP
dx

)
circle πa4

8µ

(
− dP

dx

)
ellipse π

4µ

(
− dP

dx

)
a3b3

a2+b2

rectangle1 4a3

3µ

(
− dP

dx

) [
b − 192α

π5

∞∑
n=1,3,...

tanh(nπb/2a)
n5

]
equilateral triangle

√
3a4

320µ

(
− dP

dx

)
circular segment1

a4

4µ

(
− dP

dx

)
[ tan b−b

4 −

32b4

π5

∞∑
n=1,3...

1
n2(n+2b/π)(n+b/π)(n−2b/π) ]

eccentric
annulus1,2

π
8µ

(
− dP

dx

) [
a4 − b4 − 4c2 M2

β−α
−

8c2M2
∞∑

n=1

ne−n(β+α)

sinh(nβ−nα)

]
0 < c ≤ a − b, F = a2−b2+c2

2c

M =
√

(F2 − a2)
α = 1

2 ln F+M
F−M , β = 1

2 ln F−c+M
F−c−M

half moon

1
4µ

(
− dP

dx

) [
(2a3b + 21

12 ab3) sin(θ1)+
(a4 − b4

2 − 2a2b2)θ1

]
θ1 = arccos(b/2a)

limacon π
8µ

(
− dP

dx

)
a4

(
1 + 4b2 − 2b4

)
1 infinite sum is limited to n ≤ 60.
2 c yields the distance between inner and outer circle centers.

jet
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(a) smooth expansion (sine)
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step
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Figure 4: Illustration of flow through a converging-diverging
channel: a) smooth expansion, b) abrupt expansion.

a smooth or abrupt expansion as schematically illustrated in
Fig. 4. The main effects of a converging-diverging channel
portion on the flow are an important flow acceleration in the
constricted portion and the occurrence of jet formation as-
sociated with flow separation due to flow retardation along
the divergent portion. In case of an abrupt expansion charac-
terised by a sharp trailing edge, the streamwise position of
flow separation xs is fixed at the constriction end, so that
xs = x3 as in Fig. 4(b). In case of a smooth expansion,
the flow separation position depends on the channel geom-
etry as well as on the imposed driving pressure dP/dx, so
that x3 ≤ xs ≤ x4 as in Fig. 4(a). The simplest way to
model the moving separation position is to assume that at
the separation position x = xs the transition function yields
f (xs) = c× fmin where the constant c is set to c = 1.2 in accor-
dance with literature [1]. The pressure downstream from the
flow separation point is assumed to be constant and zero so
that Pd = 0 holds for x ≥ xs and the model outcome remains
constant for x ≥ xs. Consequently, as before, imposing the
upstream pressure Pup = P0 allows to impose the driving
pressure difference dP/dx = P0. The flow in the converg-

ing section undergoes a strong streamwise acceleration due
to the Bernoulli effect which is not accounted for in case of
a purely viscous flow model (Eq. 3). Nevertheless, depend-
ing on driving pressure and geometry, in particular fmin and
Lc, the contribution of viscous effects to the flow becomes
important or even dominant compared to flow inertia effects.

4 Results
The influence of geometrical and flow parameters on the

model outcome is assessed for a uniform channel (section 4.1)
and a converging-diverging channel (section 4.2). The model
input parameters are extensively varied in a range relevant to
flow through the human upper airways. A comparison be-
tween different cross section shapes is assessed by prescrib-
ing either cross section area A or hydraulic diameter D, cor-
responding to setting either f (x) = A(x) or f (x) = D(x), as
outlined in section 2. The circle cross section shape as well as
the shape of an equilateral triangle are fully described by one
parameter a whose value follows directly from the imposed
A or D. For the remaining cross section shapes, an addi-
tional condition is necessary to obtain the geometrical param-
eter set [a b] illustrated in Fig. 1. Unless stated differently,
the following conditions (default) are applied: are = 1acl,
ael = 1.2acl, bea = 0.2aea, bcs = π/3, bhm = 0.3ahm and
blm = 1. Resulting D(A) and A(D) are illustrated in Fig. 5 as
well as the total spanwise length ytot(A) and total transverse
length ztot(A). Shown values are normalised with respect to
the circle. The resulting A(D) and D(A) vary between values

(a) D/Dcl (b) A/Acl

(c) ytot(A) (d) ztot(A)

Figure 5: a) imposing area: D(A), b) imposing hydraulic
diameter: A(D), c) total spanwise length ytot(A) and d) total

transverse length ztot(A).

obtained for a circle and an equilateral triangle: with 65%
for A(D) and with 32% for D(A). The variation of the to-
tal transverse length is more pronounced than the variation
of the transverse length do to the imposed additional condi-
tion. The total transverse and spanwise lengths of the lima-
con does not follow the same tendencies as observed for the
other assessed cross sections. So that no constant value for
ytot/ytot,cl is obtained in case of a limacon.

4.1 Uniform channel: cross section shape
The influence of the cross section shapes, depicted in

Fig. 1, on the model outcome is assessed. Fig. 6 illustrates
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the velocity distribution u(y/acl, z/acl)) for a fixed area A and
dP/dx. The maximum velocity varies between 9 m/s for

(a) el: umax = 25 m/s (b) re: umax = 23 m/s

(c) tr: umax = 21 m/s (d) cs: umax = 22 m/s

(e) ea: umax = 9 m/s (f) hm: umax = 25 m/s

Figure 6: u(y/acl, z/acl)) for A = 79 mm2 and dP/dx = 75
Pa. For a circle, umax = 26 m/s holds.

a concentric annulus and 40 m/s for the circular segment.
The velocity distribution is seen to preserve spatial symme-
try. Note that the equilateral triangle is not symmetric for
z = 0 since the maximum velocity yields z/acl ' −0.4, i.e.
z/acl = atr/acl ·

(√
(3)/6 − 1

)
/2 , whereas for the circular

section symmetry is maintained. Since for the shown geo-
metrical configuration the angles are set to π/3 in both cases,
it is seen that varying the base from straigth to circular al-
lows to perturb the position of symmetry, which is likely
a realistic perturbation configuration. Normalised spanwise
velocity profiles containing the maximum velocity are illus-
trated in Fig. 7. Most profiles - circular, elliptic, triangular

(a) A = 79 mm2 (b) D = 10 mm

Figure 7: Normalised spanwise velocity profile for
dP/dx = 75 Pa: a) A imposed, b) D imposed.

and circular segment - collapse to a single curve. The rect-
angular section profile is broader than for the circle and ob-
viously the concentric annulus profile presents two maxima.
The maximum of the half moon profile is shifted to y > 0.
The maximum velocity normalised with respect to the max-
imum velocity of a circular cross section with the same area
A or with the same hydraulic diameter D as function of the
imposed pressure difference dP/dx is shown in Fig. 8(a) and
Fig. 8(b). The corresponding normalised values of the vol-
ume flow rate are shown in Fig. 8(c) and Fig. 8(d). The values
of the imposed quantities A and D are not indicated since the

(a) A imposed (b) D imposed

(c) A imposed (d) D imposed

Figure 8: Normalised umax(dP/dx) and Q(dP/dx): a,c) A
imposed and b,d) D imposed.

normalised values of umax/ucl
max and Q/Qcl are independent

from the imposed dP/dx, as illustrated by the constant value
in the figure and legend, as well as from the imposed area
A or from the imposed hydraulic diameter D. Consequently,
the values of umax/ucl

max and Q/Qcl depend only on the cross
section shape. For Q/Qcl this is also observed from Table 3.
The normalised mean wall shear stress, shown in Fig. 9, is
dependent on the cross section shape as well as on the value
of the imposed area A or hydraulic diameter D and on the
imposed pressure difference dP/dx since its value increases
as dP/dx decreases and as the imposed A or D decreases.
The influence of varying the cross section shape parameters

(a) A = 0.79 mm2 imposed (b) A = 19 cm2 imposed

(c) D = 1 mm imposed (d) D = 50 mm imposed

Figure 9: τ(dP/dx): a,b) A imposed and c,d) D imposed.

from their default values (labelled α0) is assessed by vary-
ing α (are = αreacl, ael = αelacl, bea = αeaaea, bcs = αcs,
bhm = αhmahm and blm = αlm) as shown in Fig. 10. Results are
obtained for a constant area A and pressure difference dP/dx.
Except for a circular segment (cs), it is seen that the effect of
viscosity increases with α. For a rectangular (αre ≥

√
π/4,

deviation from a square) and elliptic cross section (αcl ≥ 1,
deviation from a circle) increasing αre,cl % 10 does not in-
fluence the effect of viscosity. In case of a circular segment,
increasing the angle of the segment decreases the influence of
viscosity at first until αcs ' 85o. Further increasing the angle
enforces the influence of viscosity, so that the ratio umax/ucl

max
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(a) umax(αlm,hm,ea)/ucl
max (b) umax(αre,el,cs)/ucl

max

Figure 10: Influence of geometrical parameter α on
umax/ucl

max. Vertical lines indicate default values (α0).

decreases and finally approximates the value associated with
a concentric annulus for which the smallest internal radius
corresponds to αea = 0.05.

4.2 Converging-diverging channel
The pressure drop obtained from a quasi one dimensional

flow in a two dimensional converging-diverging channel with
fixed width is illustrated in Fig. 11 [1] for varying transi-
tion function, constriction length Lc and upstream pressure
P0. The area A(x) is imposed at each streamwise position.
The convergent portion of the geometry introduces a pres-

(a) circle - circle, Lc = 6 (b) circle - step, Lc = 6

(c) circle - circle, Lc = 1 and Lc = 6 (d) circle - circle, Lc = 6

Figure 11: Quasi one dimensional normalised pressure
P(x)/P0 (ideal fluid (B) with viscous correction(BP)) for

fmin/ f0 = 0.3 and imposing A(x): a,b) varying upstream and
downstream transition functions for P0 = 1000Pa, c)
varying constriction length (Lc = 1 and Lc = 6) for
P0 = 1000Pa and d) varying upstream pressure P0.

sure drop along the constricted portion due to the Bernoul-
li effect. Accounting for viscosity (and assuming that the
channel width equals to the unconstricted channel height f0)
within the constriction severly alters the pressure distribu-
tion since the viscous term is the only flow actor downstream
from the onset of the uniform constricted portion up to the
flow separation point. Fig. 11(c) illustrates that prolonging
the constricted region reduces the pressure drop due to the
convergent portion until that eventually the pressure remains
positive as is observed in case of a downstream step transi-
tion in Fig. 11(b). Varying the continuous transition func-
tion influences the pressure distribution to a less extent and
is therefore not shown in Fig. 11. The viscous contribution
to the pressure drop decreases as the upstream pressure in-
creases, as shown in Fig. 11(d), whereas the convection por-

tion remains constant for a constant geometry. In Fig. 11
the viscous contribution is accounted for using a quasi one
dimensional correction. Fig. 12 illustrates the pressure dis-
tribution in case the cross section shape is accounted for.
Default and non default geometrical conditions α are applied:

(a) default α (b) default α

(c) non default α (d) non default α

Figure 12: Normalised pressure P(x)/P0 for fmin/ f0 = 0.3,
Lc = 6, P0 = 1000 and imposing A(x) for ideal fluid (B),
ideal fluid with quasi one dimensional viscous correction

(BP) and viscous flow as function of α: a,c) upstream circle
and downstream step transition and b,d) upstream and

downstream circle transition. Label ‘ea’ and ‘ea2’ indicate a
concentric and eccentric annulus.

are = 5acl, ael = 5acl, bea = 0.6aea, bcs = π/6, bhm = 0.6ahm

and blm = 0.6. Note that αcl and αtr follow directly from the
imposed area A(x). Non default geometrical conditions are
chosen so that for a uniform geometry (Fig. 10) the viscous
contribution is altered. For default α values (Fig. 12(a) and
Fig. 12(b)) the viscous contribution to the pressure drop for
all cross sections, except the circular section, is low. There-
fore, the pressure drop is close to the value obtained from the
Bernoulli term neglecting viscosity. The quasi one dimen-
sional viscous contribution overestimates (≥20%) the pres-
sure loss within the constricted portion. For non default α
values (Fig. 12(c) and Fig. 12(d)) the pressure drop varies
from near the value of no viscosity (triangle or half moon) to
well above (10% or more) the quasi one dimensional viscous
contribution, as e.g. observed for a rectangular or elliptic
cross section.

5 Conclusion
The influence of the cross section shape on viscous flow

development in a uniform and convergent-divergent channel
is assessed. The relevance for a quasi one dimensional ap-
proximation of the viscous term can be questioned for condi-
tions favoring boundary layer development.
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