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The human cortical bone is a heterogeneous medium: it is multiscale and multicomponent. It can be seen as a bi-
phasic material, pores full of marrow in a bone matrix, with an increasing porosity from periosteum to endosteum.
This porosity gradient reveals itself representative of loss of mass, changes in geometry (thinning) and variations in
structure (porosity) which occur with aging and are determinants of bone strength. By applying a homogenization
process, cortical bone can be considered as an anisotropic functionally graded material with variations in material
properties. A semi-analytical method based on the sextic Stroh formalism is proposed to solve the wave equation
in an anisotropic functionally graded tubular waveguide, without using a multilayered model to represent the
structure. This method provides an analytical solution called the matricant and explicitly expressed under the
Peano series expansion form.
Our findings indicate that ultrasonic guided waves are sensitive to the age-related evolution of realistic gradients
in human bone properties across the cortical thickness and have their place in a multimodal clinical protocol.

1 Introduction

It is now widely accepted that bone strength relies on two
main factors: bone density and bone quality. Thus, accu-
rate information is needed on the quantity of bone, the way
it is organized and the mechanical quality of its constituent
materials (elastic properties) in order to accurately evaluate
fracture risk, to optimize treatment (time and dosage) and to
reduce adverse effects.

It would appear that bone quantity alone is not sufficient
to evaluate bone fragility, and that bone geometry and quality
are key factors which significantly affect bone strength. At
the same time, as imaging techniques become more and more
accurate, a newly visible characteristic of bone is emerging:
intracortical porosity changes gradually across the thickness
of long bones [7, 21, 11, 10]. When homogenization methods
are applied to cortical bone, it can be viewed as a functionally
graded material at mesoscopic scale. Among the changes in
cortical bone due to aging, there is a joint process accentu-
ated by osteoporosis: trabecularization of the endosteal part
leading to thinning of the cortex. Therefore the gradient (spa-
tial variation) of intracortical porosity is a parameter repre-
sentative of increased variation in porosity across a reduced
thickness, and should be relevant to evaluate the combined
effect of thinning and trabecularization. This gradient of in-
tracortical porosity induces gradients of material properties
(mass density and stiffness coefficients). Thus, character-
izing the gradient of the bone properties across the corti-
cal thickness, will provide information on structure (poros-
ity), geometry (thickness) and material (stiffness). A semi-
analytical method is proposed to solve the wave equation in
an FGM waveguide. This method, based on the Stroh formal-
ism, allows us to avoid a multilayered media approximation
and to consider a cylindrical geometry in association with an
anisotropic material. Here cortical bone is represented by a
transversely isotropic tube in vacuum. The dispersion curves
of the guided waves are explored to evaluate the sensitivity
of these waves to a realistic variation in intracortical porosity.

2 Materials and Methods

The model takes into account the anisotropy and the het-
erogeneity of cortical bone: it is considered as transversely
isotropic with linearly varying material properties.

2.1 Material properties gradient

Here, every attempt was made to model realistic varia-
tion in porosity across the cortical thickness. Based on pre-
vious work reported on femoral cortical bone samples from

skeletons [6, 7], we focus on a solely female population (86
subjects) restricted to three age ranges [30-39], [60-69] and
[80-99] year old. We use these authors’ 3-point measurement
of porosity (periosteal, mid-cortical and endosteal regions) to
infer the evolution of porosity across the cortical thickness.

Then, the evolution of intracortical porosity (microscopic
scale) is translated into a variation in the elastic properties
of the bone at the mesoscopic level by using the regression
models (size of the mesodomain L = 0.5 mm) proposed by
Grimal and colleagues [10]. Thereby, the Young’s and shear
moduli and the Poisson ratios are expressed as a function of
porosity.

Porosity varies with position across the thickness of the
bone, and consequently the Young’s and shear moduli and
Poisson ratios are also dependent on the spatial variable across
the thickness (r-variable for the tube), except for νT L, which
is assumed to be constant at 0.3. Then we deduce the five
independent stiffness coefficients as five spatially-dependent
functions.
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Figure 1: Variation of the stiffness coefficients over the
porosity: c11 = c22 (�), c12 (�), c13 = c23 (Δ), c33 (×),

c44 = c55 (∗), c66 (•).

Figure 1 shows that the stiffness coefficients can be sup-
posed to linearly vary according to porosity across the cor-
tical thickness for each age group. A linear regression pro-
vides an affine function representing the evolution of the stiff-
ness coefficients across the cortical thickness.

A classical mixture law is used to obtain mass density as
a function of spatial variable r. We assume that the pores are
filled with water considered as a perfect fluid:

ρ(r) = ρbone(1 − p(r)) + ρwater p(r); (1)

with p the porosity, ρbone = 1.9 g/cm3 and ρwater = 1
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g/cm3.
The maximum and minimum values of the elastic prop-

erties (stiffness coefficients and mass density) are reported in
Table 1.

[30-39] [60-69] [80-99]
c11 per. 26.10 25.69 25.15

(GPa) end. 24.40 22.03 18.06
c12 per. 10.64 10.48 10.26

(GPa) end. 9.97 9.03 7.47
c13 per. 11.16 11.02 10.83

(GPa) end. 10.57 9.75 8.37
c33 per. 33.90 33.44 32.83

(GPa) end. 31.99 29.32 24.86
c44 per. 8.22 8.07 7.87

(GPa) end. 7.60 6.73 5.28
c66 per. 7.73 7.61 7.44

(GPa) end. 7.22 6.49 5.29
ρ per. 1.87 1.86 1.85

(g/cm3) end. 1.83 1.76 1.66

Table 1: Elastic properties of cortical bone at the periosteal
boundary (per.) and at the endosteal boundary (end.).

2.2 Waveguide geometry

Thickness of the tube was taken from [7]. Previous find-
ings [8, 9] have established that the outer diameter remains
the same after 30 years; in this study, it is fixed at 24 mm
and the thinning of the cortical wall with age is represented
by an increase in the inner diameter to reach the thickness
measured by Bousson and colleagues [7]. The geometry of
the tube for the three age ranges studied is reported in Table
2.

t (mm) a0 (mm) aq (mm) t/aq

[30-39] 4.368 7.64 12 0.36
[60-69] 3.104 8.9 12 0.26
[80-99] 2.502 9.5 12 0.21

Table 2: Geometry of the tube waveguide for three ranges
of age.

2.3 Wave propagation in radially FGM tube

We consider an elastic waveguide of thickness t placed
in vacuum. The coordinate systems (r, θ, z) for the tube are
defined with the z-axis corresponding to the axis of the long
bone and r representing the spatial variable along the cortical
thickness.

The radius of the tube r varies from a0 to aq, respectively
the inner and outer radius of the tube.

The elastic waveguide is considered to be anisotropic and
is liable to present continuously varying properties across its
thickness (er-axis). These mechanical properties are repre-
sented by the stiffness tensor C = C(r) and the mass density
ρ = ρ(r).

System equations

The momentum conservation equation associated with the
constitutive law of linear elasticity (Hooke’s law) gives the

following equations:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divσ = ρ
∂2u
∂t2
,

σ =
1
2
C (gradu + gradT u),

(2)

where u is the displacement vector and σ the stress tensor.
We seek to solve the wave equation for displacement vec-

tor (u) and radial traction vector (σr = σ.er) expressed in the
cylindrical coordinates (r, θ, z) with the basis {er, eθ, ez}:

u(r, θ, z; t) = U(n)(r) exp ı (nθ + kzz − ωt) ,

σr(r, θ, z; t) = T(n)(r) exp ı (nθ + kzz − ωt) ; (3)

with kz the axial wavenumber and n the circumferential wave-
number.

We distinguish two types of waves propagating in a cylin-
drical waveguide: circumferential waves and axial waves.
Circumferential waves are waves traveling in planes perpen-
dicular to the axis direction. They correspond to uz(r) =
0 (∀r), kz = 0 and n = kθaq. Axial waves are waves traveling
along the axis direction, the circumferential wavenumber is
an integer n = 0, 1, 2, .... Among the axial waves, we distin-
guish three types of modes numbered with two parameters
(n,m) representing the circumferential wavenumber and the
order of the branches: longitudinal (L), flexural (F) and tor-
sional (T ) modes. The longitudinal and torsional modes are
axially symmetric (n = 0) and denoted L(0,m) and T (0,m).
The flexural modes are non-axially symmetric (n ≥ 1) and
are denoted F(n,m). In this paper, we focus on longitudinal
and first flexural modes (n = 1).

A closed-form solution: the matricant

Introducing the expression (3) into the equation (2), we
obtain the wave equation in the form of a second-order differ-
ential equation with non-constant coefficients. In the general
case, there is no analytical solution to the problem thus for-
mulated. Most current methods of solving the wave equation
in unidirectionally heterogeneous media are derived from the
Thomson-Haskell method [22, 12]. These methods are ap-
propriate for multilayered structures. However, for continu-
ously varying media, these techniques replace the continuous
profiles of properties by step-wise functions, thereby mak-
ing the problem approximate, even before the resolution step.
The accuracy of the solution, like its validity domain, are thus
hard to evaluate. Moreover, a multilayered model of func-
tionally graded waveguides creates “virtual” interfaces likely
to induce artefacts. Lastly, for generally anisotropic cylin-
ders, the solutions cannot be expressed analytically, even for
homogeneous layers [14, 19].

To solve the exact problem, that is, to maintain the conti-
nuity of the variation in properties , and to take into account
the anisotropy of cylindrical waveguides, we write the wave
equation under the sextic Stroh formalism [20] in the form of
an ordinary differential equations system with non-constant
coefficients for which an analytical solution exists: the ma-
tricant [16, 1].

Hamiltonian form of the wave equation In the Fourier
domain, the wave equation can be written as:

d
dr
η(r) =

1
r
Q(r)η(r). (4)
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The components of the state-vector η(r) are the compo-
nents of the displacement vector u and the components of
the traction vector σr. As for the matrix Q(r), it contains
all the information about heterogeneity: it is expressed from
the stiffness coefficients of the waveguide in the cylindrical
system of coordinates and from two acoustical parameters
(wavenumber kz, angular frequency ω).

Explicit solution: the Peano expansion of the matricant
The wave equation thus formulated has an analytical solution
expressed between a reference point r0 and some point along
the cortical thickness direction r. This solution is called the
matricant and is explicitly written in the form of the Peano
series expansion:

M(r, r0) = I +
∫ r

r0

Q(ς)dς +
∫ r

r0

Q(ς)
∫ ς

r0

Q(ς1)dς1dς + ...,

(5)
where I is the identity matrix of dimension (6, 6). If the ma-
trix Q(r) is bounded in the study interval, these series are
always convergent [1]. The components of the matrix Q are
continuous in r and the study interval is bounded (thickness
of the waveguide), consequently the hypothesis is always
borne out. The matricant verifies the propagator property [1]:

η(r) =M(r, r0)η(r0). (6)

Free boundary conditions The waveguide is considered
to be in vacuum, so the traction vector σr defined in (3) is
null at both interfaces. Using the propagator property of the
matricant through the thickness of the structure, equation (6)
is written as η(r0 + t) = M(r0 + t, r0)η(r0) with r0 = a0. Fac-
torizing the matricant M(r0 + t, r0) under four block matrices
of dimension (3, 3), equation 6 becomes:

(
u(r = r0 + t)

0

)
=

(
M1 M2

M3 M4

) (
u(r = r0)

0

)
. (7)

Equation (7) has non-trivial solutions for detM3 = 0. The
components of M3 are bivariate polynomials in (sz, ω) or
(kz, ω). Consequently, seeking the zeros of detM3 amounts
to seeking the pairs of values (kz, ω) which describe the dis-
persion curves of guided waves propagating in a tube.

3 Results

3.1 Gradient of porosity

The variation in porosity across the cortical thickness and
its age-related evolution are presented in Table 3.

p% per. p% mid. p% end. grad
(%) (%) (%) (%/mm)

[30-39] 3.1 4.4 8.1 1.145
[60-69] 4.3 11.5 15.1 3.479
[80-99] 5.9 17.5 26.8 8.353

Table 3: Age-related regional evolution of intracortical
porosity and gradient.

Figure 2 shows that a linear profile is a good approx-
imation to model porosity changes. For every age range,
p% = aξ+b, where ξ is the spatial variable along the cortical

thickness, (a, b) ∈ �2.
The porosity gradient (%/mm) is deduced from an estima-
tion of the slope a for each age class (Table 3).
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Figure 2: Variation of the porosity along the cortical
thickness: linear regression for each range of age (R2 ≥ 0.9).

Figure 2 clearly shows that porosity sharply increases
with age in the endosteal region, whereas it remains fairly
stable in the periosteal region. Moreover, cortical thickness
greatly decreases with age, from adulthood to old age. These
two processes identified by Bousson [6, 7], are linked under
the name trabecularization of the endosteal region.

3.2 Sensitivity of guided waves to the gradient
of material properties

The effect of a realistic intracortical porosity gradient on
guided wave propagation was investigated to determine how
sensitive the guided waves are to the age-related evolution
of long bone strength; in particular, whether they are sensi-
tive both to thinning of the cortex and to increased endosteal
porosity during aging. We compared the ultrasonic guided
waves’ interaction with three tubular waveguides modeling
the diaphysis of the femur at three different age ranges: [30-
39], [60-69] and [80-99] [7]. Waveguides dimensions are re-
ported in Table 2. The dispersion curves are plotted as func-
tions of the frequency-thickness product in the usual range
for the study of ultrasonic waves in long bones [5, 21, 17].
For guided waves in long bones, the typical frequency range
is between 50 kHz to 350 MHz [15] to generate wavelengths
greater than the cortical thickness [5]. Consequently, the
frequency-thickness product to be considered is roughly [0.2,
1.5] MHz.mm for [30-39], [0.15, 1.1] MHz.mm for [60-69]
and [0.125, 0.875] MHz.mm for [80-99].

The dispersion curves of longitudinal and flexural modes
propagating in tubes show measurable differences through-
out aging (Figure 3).

The cut-off frequencies of all the modes are distinct for
the three age ranges considered (Table 4). The phase ve-
locities are also significantly different: for instance, the dis-
crepancy between the F(1, 3)-mode phase velocity for [80-
99] and the F(1, 3)-mode phase velocity for [30-39] is about
420 m/s. All these differences correspond to several thou-
sand meters per second, which are experimentally measur-
able quantities.
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Figure 3: Dispersion curves of the eight first longitudinal
modes (in black) and the ten first flexural (in grey) modes

propagating in a transversely isotropic tube, for three ranges
of age: [30-39] in straight line, [60-69] in dots and [80-99]

in dotted line.

Δ f30/60 Δ f60/80 Δ f30/80

(kHz) (kHz) (kHz)
L(0,2) 4.9 3.4 8.3
L(0,3) 88.3 60.3 148.6
F(1,2) 2.9 2.2 5.1
F(1,3) 4.5 4 8.4
F(1,4) 87.2 60.1 147.3
F(1,5) 80.8 59.7 140.5

Table 4: Variations of cut-off frequencies for longitudinal
and flexural modes with aging.

4 Discussion

The Stroh formalism used in this study has several ad-
vantages. First, it allows ultrasound propagation to be inves-
tigated in a continuously varying medium (FGM) instead of
approximating it by a multilayered medium, thus avoiding
potential round-off errors and artefacts which cannot be esti-
mated. It provides an exact solution to the exact problem, and
the degree of round-off error is manageable [1]. Furthermore,
this formalism is numerically stable and is applicable to pla-
nar and tubular geometries whatever the degree of anisotropy
of the material. The conventional methods used to solve the
wave equation are unable to deal with cylindrical coordinates
coupled with general anisotropy. The Stroh formalism is one
of the only ways to provide an analytical solution (Peano ex-
pansion of the matricant) to the wave equation in a cylindrical

structure whatever the anisotropy of the material [18]. More-
over, fluid-loading of the waveguide here can be treated as in
the case of the plate [3]. The advantages of this formalism
in the context of bone characterization are clear, since long
bone can be realistically modeled as an FGM orthotropic
tube surrounded by blood and full of marrow. In addition,
because this method takes into account actual variations in
material properties of long bones, it could prove useful as a
reference to validate models which do not allow for the gra-
dient of material properties, confirming the range of validity
(frequency domain, thickness range, order of the modes) of
the results yielded by such simplified models.

Bone fragility has long been known to be related to the
quantity of material (bone density), its quality (stiffness) and
its organization (geometry and micro-architecture). An ac-
curate evaluation of fracture risk has to assess these three
parameters together. As cortical bone ages, endosteal tra-
becularization induces thinning of the cortex. Thus, the spa-
tial variation in porosity across the cortical thickness revealed
during aging can be taken as the “missing” parameter to rep-
resent bone quality. As previously pointed out, the gradient
of material properties (density and stiffness coefficients) re-
flects the spatial distribution of the quantity and quality of
bone across the cortical thickness. Looking at the dispersion
curves obtained here for the tube, this discrepancy between
the different age ranges appears to be experimentally measur-
able. Thus, this study indicates that the gradient of homog-
enized material properties can be evaluated from measured
ultrasound velocities.

Our work demonstrates the sensitivity of guided waves to
realistic variations in the intrinsic properties of human corti-
cal bone: porosity, density, stiffness, as revealed by the gra-
dient in material properties. Nevertheless, it remains difficult
to establish a reliable criterion to apply in a clinical protocol.
Careful consideration needs to be given to choosing appro-
priate anatomical sites for ultrasonic evaluation.
Our model could usefully be extended. Several realistic char-
acteristics can easily be added to the formalism we use. Firstly,
how soft tissue affects wave propagation can be modeled by
fluid-loading, as examined in a recent paper [3]. Secondly,
the gradual variation in the intrinsic properties of the bone
matrix described in [13] can be included in the homogeniza-
tion step and would contribute to the mesoscopic gradient of
bone properties.

5 Conclusion

The gradient of material properties appears here to be
relevant to evaluating age-related changes in cortical bone,
particularly in the context of osteoporosis and therapeutic
follow-up. This paper describes an original method applied
to bone characterization able to take into account the hetero-
geneity (porosity gradient) and the anisotropy (orthotropy) of
the material as well as the tubular geometry of the structure,
even under in-vivo conditions (soft tissue).

Ultrasound evaluation appears a good candidate to char-
acterize long bone (structure, geometry and material); how-
ever, the potential of in-vivo techniques that take into account
the influence of soft tissue and marrow needs to be further
explored.

The results we obtain are promising, but the method should
be extended, in particular with a view to solving the inverse
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problem. An in-vitro experimental program would validate
the feasibility of the ultrasound measurements on bone sam-
ples of different ages. It could also evaluate the relevance of
using an in-vivo characterization of the gradient of properties
across the cortical thickness to determine bone strength and
the risk of fracture.
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