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The reverberation time of a room is related to its global absorption properties through the Sabine or Eyring 
formula. Surfaces’ scattering also influences the reverberation. However, even if the physical principles 
governing this influence are already known, a clear relation is missing between the "quantity" of scattering, the 
surfaces’ scattering coefficients and reverberation. This would help to specify the scattering properties of 
surfaces in room acoustics projects. This paper does not give a solution to this problem, but it is rather a 
reflection based on existing research. It also proposes an approach based on the acoustic radiative transfer (or 
transport) equation. This equation is first of all expressed for room acoustics problems, especially concerning the 
boundary conditions which explicitly include the surfaces’ scattering coefficients. It is then applied to a “diffuse” 
sound field and to some other simple configurations, to illustrate the possibilities of the method. 

1 Introduction 
It is well known that surfaces’ scattering influences the 

reverberation in a room [1,2,3]. However, a clear relation is 
missing between the "quantity" of scattering, the scattering 
coefficients of surfaces and reverberation, something like 
the Sabine or Eyring formula which link absorption and 
reverberation. This would help to specify the scattering 
properties of surfaces in room acoustics projects. 

A survey of the scientific literature reveals that only few 
studies have been dedicated to this subject. Kuttruff [4] 
studied the reverberation of rooms fitted with lambertian 
surfaces (scattering coefficient s=1) but this author did not 
consider other values of the scattering coefficient. Several 
authors [4,5] have analysed the relative distribution of 
specular and diffuse reflected energies, as a function of the 
(uniformly distributed) scattering coefficient. But the 
influence on the reverberation time was not investigated. 

A tentative approach has been made by Hanyu [5] to 
define the “average” scattering coefficient in a room. Like 
the average absorption coefficient, he proposes a simple 
surface-weighted average. This author also defines the 
“diffusion time” as the “time when the ratio of specularly to 
total reflected energy becomes -60dB”. However, these 
definitions and relationships rely on the assumption of 
exponential energy decays and, therefore, they cannot 
address all kinds of reverberation. In particular, there’s no 
influence of the “average” scattering coefficient on the 
reverberation time in Hanyu’s study. 

Besides theoretical developments, some authors have 
also collected experimental results through computer 
simulations. Onaga and Rindel [6] have analysed the effect 
of the scattering caused by building facades on the sound 
levels and reverberation times in a street canyon. They 
show that in low-facade streets “the reverberation time is 
determined by the sum of absorption coefficient and 
scattering coefficient”. In high-facade streets, the 
reverberation time essentially depends on absorption, 
except for very low scattering coefficients. In another paper 
by Sumarac-Pavlovic and Mijic [7], the reverberation time 
T30 has been computed in 52 rooms, all of them with 
uniform scattering coefficient and uniform absorption 
coefficient (α=0.1). These authors showed that T30 values 
depend on the room’s shape. In particular, non exponential 
decays were present for some rooms, for example rooms 
with large parallel surfaces and low scattering (s=0). More 
interesting, they defined four groups of rooms which 
present different average relationships between T30 and the 
scattering coefficient. One group in particular is 
characterised by significant variations showing a minimum 
T30 around s=0.3 and a maximum at s=0. The computed 
value of T30 corresponds with the Eyring’s value in the 
completely diffuse case (s=1), except for one group of 
rooms for which T30’s value can exceed Eyring’s value by 

(at most) 20 percents. Clearly, these results can be 
considered as test cases, if verified. They again illustrate for 
some rooms the influence of scattering which is able to 
significantly decrease the reverberation time, even with 
s<0.4. The configurations in which this might occur are 
however not clearly identified, nor is the way to combine 
different scattering coefficients in the same room.

In this paper, we propose to apply the acoustic radiative 
transfer (or transport) equation to this problem. A first 
tentative is made to derive a theoretical relationship 
between the reverberation time and scattering. In section 2, 
the radiative transfer equation is presented and a 
formulation of its boundary conditions is proposed, 
including the scattering coefficient. In section 3, the 
assumption of a perfectly diffuse field is analysed in 
relation with this equation. In section 4, the equation is 
solved for rooms with lambertian surfaces. In section 5, we 
consider the case of mixed reflections, but the solution is 
only developed under specific assumptions made on the 
cloud of image sources. 

2 The acoustic radiative transfer 
equation 

In geometrical acoustics, the sound energy can be 
described by sound particles and their energy distribution 
function ),ˆ,( tsrN

�
 in (J.m-3.sr-1), depending on the 

position r
�

 in the room, the direction of propagation ŝ
(unit vector) and the time t [8,9].  This function satisfies a 
differential equation called the radiative transfer (or 
transport) equation. In this paper we use the formulation of 
this equation described by Navarro et al [8]. 

If the distribution function is integrated for all possible 
directions of propagations around the position r

�
, then we 

obtain the sound energy density ),( trw
�

 in (J.m-3). This 

function obeys to the following equation [8]: 

),(),(),(.
),(

0 trqtrwmctrJ
t

trw �����

=+∇+
∂

∂
 (1) 

in which m is the air absorption attenuation in (m-1), c is the 
sound celerity (m.s-1) and q0 is the sound power density 
(W.m-3) generated by the sources at the position r

�
. The 

sound energy flow vector J
�

is defined by [8] as: 

Ω= �� dtsrNcstrJ ),ˆ,(ˆ),(
4

���

π

  (2) 

Now, if we define )(tw as the volume-averaged 

energy density, integrating (1) on the whole volume of the 
room V gives: 
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In this last expression, W(t) is the total power generated in 
the room at time t , S is the surface enclosing the volume V

of the room and extn̂  is the unit vector normal to this 

surface at the position dSrb ∈�
 and directed towards the 

exterior of V. 

Boundary conditions are necessary to solve these 
equations and introduce the absorption and scattering 
properties of surfaces. The more general form of these 
boundary conditions is expressed by Eq. (17) of [8]: 
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        (4) 

The total solid angle around position br
�

 has been 

divided into Ωin and Ωext containing the unit vectors ŝ
directed towards the interior and the exterior of the volume 
of the room, respectively. Equation (4) therefore represents 
the energy transported by the sound particles which are 

reflected by the surface at position br
�

, in the direction ŝ . 

RF is the surface reflecting function with units of sr-1. On 
the other hand, equation (2) gives : 
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The first term on the right represents the total flux 

(W.m-2) incident on the surface at position br
�

, while the 

second term is the total reflected flux multiplied by (-1). 
We can therefore rewrite (5) as: 

),(ˆ).,( trntrJ babsreflincextb

���
φφφ =−=  (6) 

We can further define two groups of incident sound 
particles: those which have undergone at least one diffuse 
reflection (Nd) and those which have not (Ns). Then, from 
(5) and (6), the incident flux φinc is itself decomposed into a 
specular incident flux φinc,s and a diffuse incident flux φinc,d . 
The specular reflected flux is created by the specular 
incident flux only, while the diffuse reflected flux is 
composed of the non-absorbed part of φinc,d and the 
diffusely reflected part of φinc,s : 
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With this model of reflection, we assume like Kuttruff 
[4] that “the conversion of diffuse energy into specular 
energy never occurs”. s and α represent the scattering and 
absorption coefficients respectively. Finally, introducing (7) 

into (6) for mixed reflections leads to ( )ds JJJ
���

+=  : 

),())(1()(),()(

),()(),()(ˆ).,(

),()(ˆ).,(

,,

,

,

trrrstrr

trrtrrntrJ

trrntrJ

bsincbbbdincb

bsincbsbincbextbd

bsincbsextbs

�����

������

����

φαφα
φαφα

φα

−−=
−=

=

         (8) 
with the specular absorption coefficient defined as: 

( ))(1)()()( bbbbs rrsrr
���� ααα −+=   (9) 

3 The diffuse sound field 
In a perfectly diffuse sound field, the distribution 

function ),ˆ,( tsrN
�

 would not depend on the direction ŝ
and the sound energy density ),( trw

�
 would be the same 

at all positions in the room. This would imply that 0=J
�

in 

(2) and, therefore, ),( trw
�

in (1) would not depend on the 

surfaces’ absorption properties, but only on air absorption. 
This simple observation proves that the “diffuse sound 

field” model is not directly compatible with the radiative 
transfer equation, except if all surfaces in the room are 
perfectly reflecting (α=0 ). 

It will be shown in the following section that the diffuse 
sound field can be considered as an asymptotic result of the 
diffuse reflections’ assumption. 

4 Diffuse reflections 
Rooms with diffusely reflecting walls do not always 

create diffuse sound fields [4, 5]. However, several studies 
have shown that in a reverberation experiment, when the 
sound source is cut off, the resulting time-energy decay in 
these rooms is close to an exponential function [4, 7, 9, 10]. 
Moreover, the slope is nearly identical at different positions 
in the room, though sometimes significantly different from 
the one predicted by Sabine or Eyring formula. The 
absolute value of the energy decay can also differ from one 
position to another. In a reverberation experiment, if the 
source is cut off at t=0, we therefore assume that: 
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The exponential decay is generally established after an 

initial transient period ta. 
Adequate boundary conditions can be deduced from the 

development of the particle distribution function 
),ˆ,( tsrN

�
 as a first order spherical harmonics expansion 

at all positions in the room, including on its surface [8]. A 
first order expansion is justified in a room with diffusely 
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reflecting boundaries since the sound field is “not very far 
from” a diffuse field. This development gives [8]: 
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b
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4
,

22
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���
�

�
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χ
α

α
=

−
=

                           (11) 

Note that ( )br
�χ  is a function of the surface’s 

absorption coefficient at position br
�

. 

Applying the approximations (10) and (11) in (3) and 
considering that W(t)=0 for t>0 in a reverberation 
experiment leads to: 

( ) ( )
dS

W

rW
r

V

c
mc

S

b
b�+=

�
�χγ

4
             (12) 

This expression is more general than the perfectly 
diffuse field model since it allows different absolute time-

decays at different positions br
�

. The diffuse sound field 

model is recovered if the sound energy density tends to 

uniformity ( )( )WrW b →�
 and the surfaces’ absorption is 

low ( ) ( )( )bb rr
�� αχ → . 

In the next section, we will need to precise the relation 

between W and 0W , the power of the source in a 

reverberation experiment, if the equations (10-12) are 

extended up to ( )00 →= att . In this situation, ( )γWV
represents the total absorbed power in the room just before 
cutoff in t=0- , which must equal the total emitted power in 
a stationary field: 

)0(0 →= atifWVW γ            (13) 

Expression (10) is the solution of the transfer equation 

(3) with extb ntrJ ˆ).,(
��

given by (11) and the source 

contribution W(t) = W0  for 0≤t  and W(t) = 0  for 0>t . 
Therefore, the solution of the same transfer equation for a 
Dirac pulse excitation W(t) = δ(t) is given by: 

( ) ( )
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           (14) 

5 A model for mixed specular and 
diffuse reflections 

At each position in the room and at every instant, we 
define two groups of sound particles: those which have 
already undergone at least one diffuse reflection (called the 
“diffuse” particles) and those which have not (called the 
“specular” ones): 

( ) ( ) ( )
( ) ( ) ( )twtwtw

trwtrwtrw

ds

ds

+=

+= ,,,
���

           (15) 

We also assume that, during each reflection of a group 
of sound particles at time t, a given percentage s(1-α) of the 
incident flux of specular particles is transformed into a 
diffuse reflected flux, while the diffuse incident flux never 
gives rise to a reflected specular flux (see section 2). 

It can be shown that both components of the sound 
energy density satisfy equations (1) and (3) separately. Note 
that once emitted by the source, the sound particles are 
initially “specular”, since they have not undergone any 
diffuse reflection yet. Therefore, the source’s contributions 
q0 in (1) and W in (3) are included in the “specular” 
equation. 

The specular component ),( trws

�
 could be expressed 

by the sum of the contributions of all image sources, if their 
position and power were calculated independently. In this 
section, we restrict our model to those rooms for which the 
cloud of image sources is approximately isotropic, at least 
from a certain distance from the real source. This implies 
that the specular particle distribution function Ns can be 
developed as a first order spherical harmonics expansion 

and that (11) holds for the specular flow vector sJ
�

.  

Furthermore, we consider only the rooms for which the 
cloud of image sources is approximately the same at all 
receptor’s positions in the room, meaning that: 

( ) ( )twtrw sbs ≅,
�

            (16) 

With these two assumptions on the cloud of image 
sources, the expression of the reverberation decay can be 
obtained from (3), (11) and (16): 
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As can be seen in (17), the validity of the two 
assumptions is restricted to those image sources which are 
distant from the real source by at least ctb . The solution of 
(17) is given by: 

( ) ( ) b
tt

bss ttetwtw bs >= −− )(γ
           (18) 

The diffuse component ),( trwd

�
 can be obtained by 

the following analysis. First, we still consider that the 
diffuse particle distribution function Nd can be developed as 
a first order spherical harmonics expansion. Since Nd and Ns

verify this approximation, so is their sum. Therefore, as 

explained in section 4, extnJ ˆ.
�

is approximated by (11). 

Secondly, considering that sd JJJ
���

−=  leads to: 
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The diffuse energy density )(twd therefore satisfies the 

following equation: 
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The solution of (20) is that of a diffuse sound field with 

a source contribution of the type )()( twKtW ss= . 

Applying the “impulse” solution (14) gives: 

( ) ( ) τττ δ dtrwwKtrw ssd �
∞
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  (21) 

In the following, the solution of this integral is 
developed in the case of a rapidly established exponential 

decay in the diffuse field, i.e. 0→at . For t>tb>0 , 

applying (13) and (14) leads to: 
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The first integral can be neglected if t>>tb , which 
finally leads to: 
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Adding (18) and (23) gives the average sound energy 

density )(tw as the sum of two exponential decays: 
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                 (24) 
The influence of the scattering coefficient on the sound 

energy decay and the reverberation is contained in the 

parameter μ , through γs and the ratio ( ) ( )bbs twtw / . If all 

surfaces in the room are diffuse reflectors ( )1→s , then 

this last ratio and μ tend towards zero and the model 
expressed by (10) and (12) is retrieved. If however all 

surfaces are specular reflectors, ( )1→μ  and the model 

expressed by (18) is retrieved. 
The parameter μ in (24) must always be comprised 

between 0 and 1, otherwise some unexpected behaviours 

could appear in the graph of )(tw  (negative values or 

increasing segments). 

The influence of scattering also depends on the 
uniformity of the sound field when the room is limited by 

diffusely reflecting boundaries: if ( )( )WrW b →�
, 

then ( )0→μ  and both exponential decays have the same 

slope. In that case, we retrieve the diffuse field results. 
Therefore, according to (24), the scattering coefficient 

can have an influence on the slope of the decay and the 
reverberation time only in rooms where the sound energy 
density along the boundaries is different from the average 
energy density, if their surfaces are diffuse reflectors. 
Remember also that (24) holds for rooms which have an 
isotropic and uniform cloud of image sources. 

To verify these first conclusions, some computations 
have been performed with a ray-tracing program [11] in a 
cubic room, which is known to approximately fulfil this last 
condition about the image sources’ distribution. Figure 1 
illustrates the results obtained in a cubic room with L=10m, 
α=0.1 for the six walls, a point source is placed at the 
centre of the cube and 124 receptors are uniformly 
distributed in the volume of the room (in fact, the whole 
volume has been divided into 125 identical smaller cubes, 
with a receptor at the centre of each of them, except at the 
source’s position). 107 rays have been emitted by the source 
such that the reverberation times T30 are significant up to 
two decimal places (estimated random error = 0.01s). 
Figure 1 shows the mean values of T30 obtained by 
averaging for all receptors. In this cubic room, the 
reverberation decays are approximately linear (in dB) and 
the T30 values are nearly identical at each receptor’s 
position (differences less than 0.02s). 
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2.8

0 0.2 0.4 0.6 0.8 1

scattering coefficient

T
30

(s
)

Ray tracing

Sabine

Eyring

Model eq (24)

Figure 1: Reverberation time T30 computed by four models 
in a cubic room with L=10m and α=0.1. The scattering 

coefficient is the same for all surfaces and its value is one 
of the following {0, 0.3, 0.65, 1}. 

The “ray tracing” curve in figure 1 shows a continuous 
significant decrease of T30 from s=1 to s=0.3 (the 
scattering coefficient is the same for all surfaces). Then, the 
reverberation time suddenly rises for s=0. This behaviour is 
similar (though in a less extent) to the results presented by 
Sumarac-Pavlovic and Mijic [7]. An explanation for this 
sudden increase for low scattering coefficients is proposed 
in the following. 

To compute T30 values with the model (24), we need 
some more approximations. For example, the ratio 

WrW b /)(
�

which appears in the expression of γ  in (12) 

and μ in (24) will be approximated in the cubic room by 
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identifying in the ray tracing results the SPLs computed at 
those receptors which are the closest from the cube’s 
envelope. Another example is the ratio 

( ) ( )bbs twtw / which must be estimated as a function of 

the scattering coefficient (space is missing to develop and 
describe this estimation in this paper) . 

The model (24) predicts a continuous decrease of T30 
from s=1 to s=0 in the cubic room with α=0.1. The s=1 
value is determined by the exponential constant γ  in (12). 

The average value of the ratio WrW b /)(
�

on the surface 

equals 0.97, which leads to a reverberation time T30=2.62s 
in figure 1. This prediction is a bit closer to the ray tracing 
value than Sabine and Eyring’s values. The s=0 value is 
determined by the exponential constant γs  in (17). It would 
also be a good prediction of the ray tracing results if the 
T30 values were still continuously decreasing between 
s=0.3 and s=0. However, the predictions of the model (24) 
are not suitable between s=0 and s=1, suggesting that the 
approximation that we have used for the ratio 

( ) ( )bbs twtw / is not adequate. 

Figure 2 shows the same results obtained in the same 
cubic room, but with α=0.3. The conclusions are similar. 
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Figure 2: Same as figure 1 with α=0.3. 
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Figure 3: Reverberation time T30 computed by four models 
in an irregular room (V=733m³, S=506m²) and α=0.1. The 

scattering coefficient is the same for all surfaces. 

An explanation of the differences observed between the 
ray tracing model and (24) at low scattering values could be 
that large parallel surfaces create image sources in well 
defined directions, which obviously contradicts the 
assumptions that lead us to the specular contribution (18). 

To verify this, we computed T30’s values in an irregular 
room with approximately the same volume and surface than 
our cubic room. The results illustrated in figure 3 clearly 
show that the increase of T30 for s=0 has almost 
disappeared (compare with figure 1). 

6 Conclusion 
The acoustic radiative transfer equation is a possible 

approach to model the influence of the scattering 
coefficient on the reverberation time. However, much 
research work must still be done to find an adequate 
formulation of the model, particularly for: 
- the parameter μ in (24), 
- the contribution of large parallel surfaces which should 

be isolated, 
- the contribution of surfaces with different scattering 

properties. 
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