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Fluid-
shear wave. Walter Lauriks recognised the commonality of the physical mechanisms which govern the acoustical 
properties of such media and initiated a great many studies ranging from the acoustical monitoring of marrow 
filled bone to properties of air-filled bread, soils and snow. The Biot parameter values that create distinct slow 
waves in transmission experiments are explored. There are two types of surface waves at a poroelastic boundary: 
a fluid-coupled Rayleigh wave and a wave that depends on the surface impedance. A rough hard surface is also 
able to generate an acoustic surface wave. Walter Lauriks studied pore-related surface waves and those over a 
periodically-rough hard surfaces. It is shown that propagation over hard-backed square lattice grating layers 
modelled previously using modal analysis can be described as that over a square pore layer. Similarly 
propagation over rectangular grooves or bosses also modelled previously using modal analysis can be modelled 
as that over a slit pore layer.  

1 Introduction 
Many of the predictions used when studying fluid-

saturated porous media with elastic frames, i.e. poroelastic 
media, are based on Biot theory [1]. The theory assumes 
that the incident wavelengths are much larger than the 
constituent solid particles and pores, i.e.  >> a where  
represents the wavelength and a represents a characteristic 
microstructural dimension. An important prediction of the 
theory is that, as well as a shear wave, there are two kinds 
of compressional waves: a Type 1 
predominantly in the solid frame and a Type 2 
fluid borne wave which travels mainly in the pore fluid. 

solid frame move together an
motion in which fluid and frame are moving out of phase 
i.e. are essentially decoupled.  

There is a long and continuing history of skepticism in 
the underwater acoustics community about the existence of 

 [2]. Partly this stems from the inability of 
the original Biot theory to explain the observed frequency 
dependence of attenuation in underwater sediments. In its 
original form Biot theory predicts that fast wave attenuation 
is proportional to f2 (where f represents frequency) at low 
frequencies and f at high frequencies. Several sets of data 
suggest a more or less linear dependence over a wide 
frequency range. In classical experiments on water-filled 
glass beads, the slow wave was measurable only when the 
beads were fused together. The non-appearance of the slow 
wave when the beads were unconsolidated has been 

 [3]. However it seems that 
other important factors were the saturation with water and 

observed in air-filled unconsolidated glass beads and sand 
subject to acoustical (non-contact) excitation [4].   

The slow  wave is the dominant type of wave in air-
filled porous media with relatively stiff frames [5]. There 
have been many studies of the influence of the porous 
structure on the acoustical properties of such media and 
additional parameters have been introduced to allow for  
arbitrary pore structure [6]. The conditions for observing 
separate of pulse 
transmission through fluid-saturated poroelastic layers and 
the issue of the frequency-
water-saturated sediments are discussed in section 2. 

Two types of surface wave result from excitation from a 
point source located above air-filled porous elastic media. 
One of these surface waves depends primarily on the 
properties of the solid frame and is similar to the Rayleigh 
wave observed at the free boundary of an elastic solid [7] 
travels at a little less than the speed of sound in air. The 
other type of surface wave is related primarily to the pore 

structure in that it is the only such wave that is observed 
above a rigid-framed porous layer.  

Classical studies of the surface waves induced by long 
wavelength coherent scattering from a rough surface have 
been made by Tolstoy [8] and Lucas and Twersky [9]. The 
latter work considers periodic as well as random roughness. 
A particular example of a periodically-rough surface is the 
square lattice surface formed by a double layer of 
commercial overhead lighting panels. A comb-like surface 
is expected to be locally-reacting and to have purely 
imaginary normalised impedance given by  

 Z(L)/ c = coth( ikL).  (1) 

where L is the (double) layer thickness and k = /c is the 
wave number in air. However it has been found that (a) the 
lattice surface is not locally-reacting and (b) the angle-
dependent impedance has a non-zero resistive component. 
This has been explained in terms of leakage between the 
stacked layers. An exact analytical solution has been 
obtained for plane wave scattering by a lattice surface 
consisting of square cells of side a and depth L having 
infinitely thin walls and assuming leakage between the cell 
partitions [10]. A distinction has been drawn between 
surface wave and diffraction modes. The grating is found to 
be equivalent to an impedance plane at low frequencies 
when only a specularly-reflected wave exists and to be 
locally-reacting if L/a >> 1 and /a >> 1. As well as surface 
wave creation at low frequencies for incident curved wave 
fronts, at high frequencies such that wavelengths are 
comparable to the grating period, the possibility of 
generating large amplitude surface waves over a grating in 
either the backward or forward directions with 
homogeneous plane-waves has been predicted. Surface 
waves over rectangular grooves and lattice layers have been 
analysed using a modal theory deduced from studies of 
electromagnetic wave propagation [11,12]. The analysis 
was carried out ignoring viscous and thermal effects. Modal 
analysis predicts a reduced effective layer depth and 
provides good agreement with surface wave data.  

Propagation over rectangular grooves in an acoustically-
hard surface should be equivalent to that over a hard-
backed rigid-framed layer containing slit-like pores [1,13]. 
Similarly propagation over a square lattice layer should be 
equivalent to that over a rigid-porous layer containing 
square pores [14]. These equivalencies are explored in 
respect of excess attenuation spectra due to a point source 
and deduced surface impedance in section 3. Measurements 
and predictions of surface wave dispersion, excess 
attenuation and impedance spectra are reported. It is found 
that viscous friction effects are not negligible. Concluding 
remarks are made in section 4. 
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2 Slow and fast wave transmission 

2.1 Pulse separation 

The arrival of two distinct compressional waves has 
been observed frequently in measurements of ultrasonic 
pulse transmission through water-filled bone samples [see 
for example ref.15]. It has proved more difficult to observe 
separate arrivals in pulse transmission through water-filled 
sediments [16]. Figures 1 and 2 compare the dispersion and 
attenuation spectra predicted using Biot theory with the 
representative parameter values of water-filled bone and 
sand listed in Table 1. Viscous and thermal effects have 
been predicted by assuming identical slit-pores rather than, 
for example, by using the Johnson-Allard model [15]. More 
sophisticated models of these effects require additional 
parameters; values of which have been determined mainly 
for air-filled absorbing materials but are not extensively 
available for other media. The parallel slit idealisation of 
the pore structure does not have a large influence on the 
conclusions that can be reached concerning the comparative 
properties   
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Figure 1: Predictions of (a) dispersion and (b) attenuation 
spectra for compressional and shear waves in water-filled 
bone characterised by the parameters listed in Table 1. The 

dispersion predictions include high-frequency and rigid-
frame limits for the slow wave. 
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Figure 2: Predictions of (a) dispersion and (b) attenuation 
spectra for compressional and shear waves in water-filled 
sand characterized by the parameters listed in Table 1. The 

dispersion predictions include high-frequency and rigid-
frame limits for the slow  wave. 

 
Although the predicted fast  and slow  wave speeds 

are sufficiently different in both water-filled media that, in 
principle, they should separate during transmission through 
a thick sample, in the water-filled sand the attenuation of 
the slow  wave is significantly higher than that of the fast 
wave and increases much more rapidly with increasing 
frequency. This makes .  

found in transmission through a 5 cm thick layer of 
partially-reticulated polyurethane foam [17]. The 
parameters deduced by fitting these data indicate a 
relatively high tortuosity value (7.8) for this foam. This 

. 
Together with the relatively high bulk modulus (1700 kPa) 
of this foam, the high tortuosity 
wave speed 
wave thereby giving a substantial time delay between the 
two wave types during transmission through the 5 cm layer.   

Table 1 Parameter values used for the predictions in 
Figures 1-3 

Parameter Water-
filled 
cancellous 
bone  

Water-
filled 
sand 

Air-filled 
partially-
reticulated 
foam [18] 

Density of solid, s 
kg/m3 

1960 2650 1200 

Density of fluid, f, 
kg/m3 

1000 1000 1.2 

Fluid specific heat 
ratio,   

1.0107 1.0107 1.4 

Prandtl number, 
NPR 

7 0.71 

Porosity,  0.65 0.3 0.98 

Flow resistivity  
Pa s m-2 

200 10000 8760 

Tortuosity 1.9 1.25 2.19 

Bulk modulus of 
solid Ks GPa 

20 20 0.0625 

Bulk modulus of 
solid frame, Kb 
GPa 

4.7 2.25 6.89×10-4 

Bulk loss factor 0 0.02 0.09 

Rigidity Modulus 
of solid frame, GPa 

1.035 0.13 1.15×10-5 

Rigidity loss factor 0 0.02 0.09 

(Adiabatic) Bulk 
modulus of fluid, 
Kf GPa 

2.2 1.4×10-4 

 
Wave speeds have been obtained from transmission 

measurements on a layer of polyurethane foam subjected to 
mechanical and acoustical excitation. The acoustical 
excitation was provided by a point source loudspeaker and 
the point mechanical excitation was through a rod and plate 
attached to a shaker. The acoustical transmission was 
monitored by a microphone and the frame disturbance on 
both sides was monitored by a Laser-Doppler vibrometer. 
The measurement methods and parameter deduction 
methods are described more fully elsewhere [18]. Fig. 3(a) 
compares resulting data with predictions based on the 
parameter values listed in Table 1. The speeds deduced 
from the receiving microphone are represented by asterisks 
and those deduced from frame displacements are 
represented by filled circles. These data and predictions are 

between Type 1 and Type 2 
waves near 1 kHz. As indicated by the prediction for a rigid 
frame, the frame displacement arrivals are effectively those 

 below 1 kHz and those for the 
wave above 1 kHz. Similarly the speeds deduced from 
acoustical excitation 

. The 

(a) (b) 

(a) (b) 

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

1879



 

predicted fluid-to-solid amplitude ratios in Figure 3(b) also 
show that below 1 kHz the largest fluid amplitudes are 
associated with the Type 1 wave and above 1 kHz with the 
Type 2 wave: these latter amplitudes are negative since the 
fluid and solid motions are out of phase. The shear wave is 
predicted to involve relatively little fluid motion. 
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Figure 3: (a) Measured dispersion (points) of two 
compressional waves in an air-filled foam compared with 
predictions (dashed lines and dots) using the parameters 

listed in Table 1 deduced by fitting acoustic-to-frame 
coupling data [18]; also shown is the rigid frame limit 

(continuous line) (b) predicted frequency dependence of the 
ratios of fluid to solid particle displacement amplitudes for 

each of the two compressional waves. 

2.2 Fast wave attenuation spectra 

Figure 4 shows that without including any frame losses 
Biot theory predicts a fast wave attenuation spectrum in 
water-filled sand that is close to f3/2 dependence between 1 
and 6 kHz. However the inclusion of frame losses (see table 
1) alters the frequency dependence to one that is near linear. 
Use of complex elastic moduli is standard in Biot-Stoll 
theory [19]. However, as demonstrated in Fig.4, inclusion 
of a pore size distribution, even without using complex 
elastic moduli, also alters the predicted frequency 
dependence to be near linear over part of the frequency 
range of interest.  
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Figure 4: Predicted attenuation spectra in a water filled sand 
(Table 1) without frame losses and identical pores (solid 

line), a pore size distribution (heavy broken line) and with 
identical and pores frame losses (dash-dot line). 

The predictions for a pore size distribution have been 
obtained by using a two-parameter Padé approximation 
corresponding to a log-normal distribution of pore sizes 
with standard deviation of 2 phi units [13,20]. 

3 Excess attenuation and deduced 
impedance spectra over square cell 
lattice layers 

3.1 Excess Attenuation 

Figure 5 shows the arrangement used to measure 
propagation over the surfaces of single, double and triple 
square cell lattice layers each of depth 0.0126 m. The cell 
width is 0.014 m and cell wall thickness is 0.00014 m. The 
corresponding porosity is 0.98. The flow resistivity, Rs, of a 
medium of porosity  containing square pores of side a 
saturated by a fluid with coefficient of fluid viscosity   is 
given by  

 Rs = 28.48 / a2,  (2) 

Using the known dimensions of the lattice cells and cell 
walls, Eq.(2) gives a flow resistivity of 2.7 Pa s m-2. The 
neglect of viscous and thermal effects when predicting the 
acoustical properties of the lattice with cell dimension 
0.014 m using modal analysis [11] is reasonable since the 
cell dimension is much larger than the viscous or thermal 
boundary layer thickness and is consistent with the rather 
low value of flow resistivity. 

 

 

Figure 5: Measurement of propagation over lattice layers. 

According to modal analysis [11], if viscous losses are 
neglected and the squares in the lattice have depth L, side a 
and wall thickness (d  a), then, at wavelengths larger than 
a, the normalised impedance model for the hard-backed 
lattice is given by  

 Z(L)/ c = (1/ ) coth( ikL ),  (3) 

where  = (a/d)2 and effective depth L L  alog(2)/
The surface impedance of a hard-backed layer of rigid 

material of thickness L, containing square pores is given by 
[13,14] 

 )coth( ikLZLZ c ,  (4) 

 Zc  = ( fcf) 1 (1/ ) C 0.5,  (5) 

 k   ( C 0.5,   (6) 

 H , C   P0) [     H (NPR)   (7) 

         H( ) = 
4
4 {(m+0.5)2(n+0.5)2[1+2i((m+0.5)2+(n+0.5)2)/ 2]}-1  (8) 

(a) (b) 

(c) 
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where  = (a (2 / ),  is the angular frequency,  is 
the fluid density and the (infinite) summation in Eq.(7) is 
over the modal indices (m,n).  

Details of methods of calculating EA spectra for a given 
surface impedance and source-receiver geometry may be 
found elsewhere [13]. Figure 6 shows predictions of excess 
attenuation (EA) spectra over a single lattice layer with 
source and receiver at 0.05 m height above the acoustically-
hard base and separated by 0.7 m. The predictions have 
been made assuming that the lattice layer is locally-reacting 
and using (i) Eq. (2), (ii) slit-like pores [13] and (iii) square 
pores (Eqs. (3) - (7)) with the known lattice porosity and 
flow resistivity. These predictions are practically identical. 
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Figure 6: Predicted excess attenuation spectra with source 
and receiver heights of 0.05 m and separation 0.7 m over a 

single square cell lattice layer using an effective layer depth 
of 0.011 m and three impedance models (see text). 

Figures 7(a) (c) compare measurements and predictions 
of Excess Attenuation (EA) spectra over single, double and 
triple lattice layers respectively with (point) source and 
receiver at a height of 0.05 m above the lattice and 
separated by 0.7 m. The predictions use the surface 
impedance calculated from Eqs. (3)  (7) with m = n = 500 
and an effective layer depth L L  alog(2)/ There is 
reasonable agreement between predictions and data. 

3.2 Deduced impedance and surface wave 
dispersion 

Complex attenuation data may be used to deduce 
surface impedance as long as the surface is locally reacting 
[21]. Figure 8 compares impedance spectra deduced in this 
manner for a triple lattice layer with those predicted by the 
slit pore model (continuous real, broken imaginary lines) 
using the measured depth (0.038 m) and Eq. (3) with an 
effective depth (0.036 m). Again there is not much 
difference between the predictions but neither of the 
predictions agrees well with the deduced impedance 
spectra. Eq. (3) predicts purely imaginary surface 
impedance (continuous black line) whereas the slit pore 
model predicts a non-zero real part which is evident also in 
the deduced impedance. A phase gradient method has been 
used to measure the surface wave dispersion. Example data 
and predictions for the triple lattice layer are shown in Fig. 
9.  The deduced impedance gives best agreement with data. 

4 Conclusion 

Biot theory, modified by Allard and others, is a 
powerful tool for understanding and exploiting the 
acoustical properties of poroelastic media. In particular the 

properties of air-filled media and to transmission through 
water-filled bone. It is harder to observe in water-filled 
sediments. An application of Biot theory to remote 
monitoring of unsaturated soil conditions is reported 
elsewhere [22]. 
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Figure 7: Measured and predicted excess attenuation 
spectra with source and receiver height of 0.05 m and 
separation 0.7 m over (a) a single square lattice layer, 
effective layer depth 0.011 m. (b) double lattice layer, 
effective layer depth 0.024 m (c) triple lattice layer, 

effective layer depth 0.036 m. 

 

Figure 8: Deduced (points) and predicted impedance 
spectra for a triple lattice layer, effective layer depth 0.036 

m. (key in text). 

(a) 

(b) 

(c) 
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Figure 9: Measured surface wave dispersion (joined circles) 

over a triple lattice layer and predictions using the square 
pore impedance model (Eqs. (3) - (7) blue line) or the 

impedance deduced from complex excess attenuation data 
(red line). 

Surface waves travelling at slightly less than the speed 
of sound in air are common to sound propagation near 
grazing over porous layers and randomly- or periodically- 
rough boundaries. The propagation of sound over 
periodically rough surfaces is of interest in designing 
ground effects for noise control. 
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